PSTAT 100: Data Science Concepts and Analysis

Course Schedule and Calendar

Instructor
Quarter

Ethan Marzban

Spring 2024

Course Schedule

Note

This page will be updated as we progress through the quarter; please check back regularly for updates!

Note

Please try to complete the readings before coming to the specified lecture/starting the specified lab.

Textbook Abbreviations and Emoji Meanings
WEEK DATE READING TOPIC MATERIALS

1

Mon, Apr 1

πŸ’» Lab00: Intro to R and Dataframes


Tue, Apr 2

πŸ§‘β€πŸ« Lec01: Intro to Datascience

πŸ› Lec00 Slides πŸ› Lec01 Slides


Thu, Apr 4

πŸ“– R4DS, Chapter 5: Data tidying
πŸ“– R4DS, Chapter 3: Data transformation
πŸ“„ Hadley Wichkam Tidy Data, Journal of Statistical Software (2014)

πŸ§‘β€πŸ« Lec02: Tidy Data

πŸ› Lec02 Slides

2

Mon, Apr 8

πŸ’» Lab01: Tidy Data and Databases



Tue, Apr 9

πŸ“– R4DS, Chapter 1: Data visualization
πŸ“– R4DS, Chapter 9: Layers
πŸ“„ Hadley Wichkam A Layered Grammar of Graphics, Journal of Computational and Graphical Statistics (2010)

πŸ§‘β€πŸ« Lec03: Graphics, Part I

πŸ› Lec03 Slides


Wed, Apr 10

Lab01 Due Extended to Friday


Thu, Apr 11

πŸ§‘β€πŸ« Lec04: Graphics, Part II

πŸ› Lec04 Slides


Sun, Apr 14

Homework 01 Due

3

Mon, Apr 15

πŸ’» Lab02: Statistical Visualizations



Tue, Apr 16

πŸ§‘β€πŸ« Lec05: Exploratory Data Analysis


Wed, Apr 17

Lab02 Due Extended to Friday


Thu, Apr 18

πŸ§‘β€πŸ« Lec06: Sampling Techniques and Study Design

πŸ› Lec06 Slides


Sun, Apr 21

Mini-Project 01 Due

4

Mon, Apr 22

πŸ’» Review for ICA01 (NOT TURNED IN)



Tue, Apr 23

πŸ§‘β€πŸ« Lec07: Regular Expressions Prep for ICA01



Wed, Apr 24



Thu, Apr 25

πŸ§‘β€πŸ« In-Class Assessment 01


5

Mon, Apr 29

πŸ’» Lab03: RegEx



Tue, Apr 30

πŸ§‘β€πŸ« Lec09: Statistics, Part I

πŸ› Lec09 Slides


Wed, May 1

Lab03 Due


Thu, May 2

πŸ“– Selected Chapters from IMS: β€œStatistical Inference”

πŸ§‘β€πŸ« Lec10: Statistics, Part II

πŸ› Lec10 Slides


Sun, May 5

Homework 02 Due

6

Mon, May 6

πŸ’» Lab04: Two- and Multi-sample Tests



Tue, May 7

πŸ“– Selected Chapters from IMS: β€œRegression Modeling”

πŸ§‘β€πŸ« Lec11: Introduction to Statistical Modeling and Regression

πŸ› Lec11 Slides


Wed, May 8

Lab04 Due


Thu, May 9

πŸ“– Selected Chapters from IMS: β€œRegression Modeling”

πŸ§‘β€πŸ« Lec12: More Regression

πŸ› Lec 12 Slides


Sun, May 12

Mini-Project 02 Due

7

Mon, May 13

πŸ’» Lab05: Regression



Tue, May 14

πŸ“– TBD

πŸ§‘β€πŸ« Lec13: Regression, Part III

πŸ› Lec 13 Slides


Wed, May 15

Lab05 Due


Thu, May 16

πŸ“– TBD

πŸ§‘β€πŸ« Lec14: PCA

πŸ› Lec 14 Slides


Sun, May 19


8

Mon, May 20

πŸ’» Lab06: PCA/KDE, and Review for ICA02



Tue, May 21

πŸ“– TBD

πŸ§‘β€πŸ« Lec15: Finishing up PCA; Review for ICA02

πŸ› Lec 15 Slides
Homework 03 Due


Wed, May 22

No Lab Due


Thu, May 23

πŸ§‘β€πŸ« In-Class Assessment 02


9

Mon, May 27

HOLIDAY: No Lab or Sections



Tue, May 28

πŸ“– TBD

πŸ§‘β€πŸ« Lec17: PCA, Part III

πŸ› Lec 17 Slides
MP03 Released


Wed, May 29



Thu, May 30

πŸ“– TBD

πŸ§‘β€πŸ« Lec18: Classification, and Nonparametrics

πŸ› Lec 18 Slides
Final Project Released

10

Mon, Jun 3

πŸ’» Lab07: Open OH for MP03



Tue, Jun 4

πŸ“– TBD

πŸ§‘β€πŸ« Lec19: KDE, and Clustering

**Mini-Project 03 Due**">

β€œπŸ› Lec 19 Slides
Mini-Project 03 Due


Wed, Jun 5

NO Lab 07 due; everyone will just receive a 100%


Thu, Jun 6

πŸ“– R4DS, Chapter 18: Missing Values
Additional Readings to be posted

πŸ§‘β€πŸ« Lec20: Classification, Clustering, and Missingness

β€œπŸ› Lec 20 Slides

Finals

Tue, Jun 11

Final Project Due

Course Calendar