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 RMS Titanic

The RMS Titanic was an ocean liner that set sail from Southampton

(UK) to New York (US) on April 10, 1912.

Image Source:

https://images.liverpoolmuseums.org.uk/2020-

01/titanic-deck-plan-for-titanic-resource-pack-

pdf.pdf

5 days into its journey, on April 15,

1912, the ship collided with an

iceberg and sank.

→ Tragically, the number of

lifeboats was far fewer than

the total number of

passengers, and as a result

not everyone survived.

A passenger/crew manifest still exists, which includes survival statuses.
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 RMS Titanic

TABLE CONTINUES BELOW

PassengerId Survived Pclass Name Sex Age

1 0 3 Braund, Mr. Owen Harris male 22

2 1 1 Cumings, Mrs. John Bradley

(Florence Briggs Thayer)

female 38

3 1 3 Heikkinen, Miss. Laina female 26

SibSp Parch Ticket Fare Cabin Embarked

1 0 A/5 21171 7.25 S

1 0 PC 17599 71.28 C85 C

0 0 STON/O2. 3101282 7.925 S

titanic <- read.csv("data/titatnic.csv")1
titanic %>% head(3) %>% pander()2
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 RMS Titanic

Question: given a passenger’s information (e.g. sex, class, etc.), can we

predict whether or not they would have survived the crash?

Firstly, based on domain knowledge available to us, we believe there to

be a relationship between survival rates and demographics.

→ For example, it is known that women and children were allowed to

board lifeboats before adult men; hence, it’s plausible to surmise that

women and children had higher survival rates than men.

→ Additionally, lifeboats were located on the main deck of the ship; so,

perhaps those staying on higher decks had greater chances of

survival than those staying on lower decks.
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 RMS Titanic
First Model

To make things more explicit, let’s suppose we wish to predict survival

based solely on a passenger’s age.

This lends itself nicely to a model, with:

→ Response: survival status (either 1 for survived, or 0 for died)

→ Predictor: age (numerical, continuous)

Now, note that our response is categorical. Hence, our model is a

classification model, as opposed to a regression one.

The (parametric) modeling approach is still the same:

1. Propose a model

2. Estimate parameters

3. Assess model fit
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 RMS Titanic
First Model

We just have to be a bit more creative about our model proposition.

Let’s see what happens if we try to fit a “linear” model: yi = β0 + β1 xi +

εi
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 RMS Titanic
First Model

But what does this line mean?

→ The problem is in our proposed model.
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 RMS Titanic
First Model

yi = β0 + β1 xi + εi

For any i, yi will either be zero or one.

But, for any i, xi will be a positive number, not necessarily constrained to

be either 0 or 1.

So, this model makes no sense; how can something that is categorical

equal something that is numerical?

There are a couple of different resolutions - what we discuss in PSTAT

100 is just one possible approach.
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 RMS Titanic
Second Model

First Idea: rethink the way we incorporate randomness (error) into our

model.

→ Let’s define the random variable Yi to be the survival status of the ith

(randomly selected) passenger. Then Yi ~ Bern(πi), where πi denotes

the probability that the ith (randomly selected) passenger survives.

Second Idea: instead of modeling Yi directly, model the survival

probabilities, πi.

→ After all, the probability of surviving is likely related to age.

But, πi = β0 + β1 xi is still not a valid model, since πi is constrained to be

between 0 and 1, whereas (β0 + β1 xi) is unconstrained.
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 RMS Titanic
Second Model

Third Idea: apply a transformation to β0 + β1 xi.

Specifically, if we can find a function g that maps from the real line to the

unit interval, then a valid model would be πi = g(β0 + β1 xi).

What class of (probabilistic) functions map from the real line to the unit

interval?

→ CDF’s!

Indeed, we can pick any CDF to be our transformation g. There are two

popular choices, giving rise to two different models:

→ Standard Normal CDF, leading to probit models

→ Logistic Distribution CDF, leading to logit models
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 Probit vs. Logit Models

Probit Model: πi = Φ(β0 + β1 xi)

Φ(x) := ∫

x

−∞

1

√2π
e−z2/2 dz

Logit Model: πi = Λ(β0 + β1 xi)

Λ(x) :=
1

1 + e−x
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 Logistic Regression

As an example, let’s return to our Titanic example where πi represents

the probability that the ith passenger survived, and xi denotes the ith

passenger’s age.

A logistic regression model posits

πi =
1

1 + e−(β0+β1xi)

Equivalently,

ln(
πi

1 − πi

) = β0 + β1xi

→ Aside: we call the function g(t) = ln(t / (1 - t)) the logit function.
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 Logistic Regression
Model Assumptions
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 Logistic Regression

The second formulation of our model makes it a bit easier to interpret

the coefficients:

→ Ceterus paribus (holding all else constant), a one-unit increase in xi
is modeled to be associated with a β1 -unit increase in the log-odds

of πi.

→ β0 represents the log-odds of survival of a unit with a predictor

value of zero.

In R, we fit a logistic regression using the glm() function.

→ This is because logistic regression is a special type of what is

known as a Generalized Linear Model (GLM), which is discussed

further in PSTAT 127.
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 Logistic Regression
Titatnic Dataset

glm(Survived ~ Age, data = titanic, family = "binomial") %>% summary1

Call:
glm(formula = Survived ~ Age, family = "binomial", data = titanic)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)  
(Intercept) -0.05672    0.17358  -0.327   0.7438  
Age         -0.01096    0.00533  -2.057   0.0397 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

ln(
π̂i

1 − π̂i

) = −0.05672 − 0.01096xi
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 Logistic Regression
Titatnic Dataset

So, as expected, a one-unit increase in age corresponds to a decrease in

the log-odds of survival.

→ Again, this is “expected” because we know children were allowed to

board lifeboats before adults.

By the way, can anyone tell me why we use family = "binomial" in

our call to glm()?

→ Specifically, what is “binomial” about our logistic regression model?

(Hint: go back to the beginning of how we constructed our model!)

Example Question: Karla was around 24 years old. What is the

probability that she would have survived the crash of the Titanic?
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 Logistic Regression
Titatnic Dataset

glm_age <- glm(Survived ~ Age, data = titanic, family = "binomial")1
(p1 <- predict(glm_age, newdata = data.frame(Age = 24)))2

         1 
-0.3198465 

predict.glm() will give you the predicted log-odds - to find the true predicted survival probability, you

need to invert.

Caution

1 / (1 + exp(-p1))1

        1 
0.4207132 

So, based on our model, Karla has an approximately 42.1% chance of

having survived the crash of the Titanic.
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 Logistic Regression
Titatnic Dataset

Code

Does this make sense, based on our background knowledge?
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 Multiple Logistic Regression

Of course, we can construct a logistic regression with multiple

predictors:

πi = Λ(β0 +
p

∑

j=1

βjxij) =
1

1 − e
−(β0+∑p

j=1 βjxij)

logit(πi) = β0 +
p

∑

j=1

βjxij

Estimating the parameters ends up being a task and a half; indeed, there

do not exist closed-form solutions for the optimal estimates.

→ Instead, most computer programs utilize recursive algorithms to

perform the model fits.
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✏ Your Turn!

Adebimpe has found that a good predictor of whether an email is spam or not is the number of times the

word “promotion” appears in its body. To that end, she has fit a logistic regression model to model an

email’s spam/ham status as it relates to the number of times the word “promotion” appears. The resulting

regression table is displayed below:

a. What is the predicted probability that an email containing the word “promotion” 3 times is spam?

b. Provide an interpretation for the value 0.01844 in the context of this problem.

Your Turn!

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.68748    0.04360  15.768  < 2e-16 ***
num_prom     0.10258    0.01844   5.564  1.2e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

03:00
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 Classification

Now, logistic regression gets us estimated survival probabilities.

It does not, however, give us survival statuses - to get those, we need to

build a classifier.

→ For example, a few slides ago we said that 24-year-old Karla had a

42.1% chance of surviving the crash of the Titanic.

→ But, if she were an actual passenger on the Titanic she would have

either survived or not.

In binary classification (i.e. where our original response takes only two

values, survived or not), our classifier typically takes the form: assign yi
a value of survived if the survival probability is above some threshold c,

and assign yi a value of did not survive if the survival probability falls

below the threshold.
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 Titanic Classifier

To start, let’s explore the following classifier: {Yi = 1} if and only if the

predicted survival probability was above 50%.

→ Let’s also stick with our model that models survival probabilities in

terms of only Fare.

glm_fare <- glm(Survived ~ Fare, data = titanic, family = "binomial"1
probs <- glm_fare$fitted.values2
titanic$PassengerId[which(probs > 0.5)] %>% head(15)3

 [1]   2  28  32  35  53  55  62  63  73  89  98 103 119 121 125

Can anyone tell me, in words, what these represent?

sum(titanic[which(probs > 0.5),]$Survived) / length(which(probs > 0.51

[1] 0.6833333

What does this represent?
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 Confusion Matrices
24
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 Confusion Matrices

For example, in the context of the Titanic dataset:

→ The count of true positives is the number of passengers correctly

classified as having survived

→ The count of false negatives is the number of passengers

incorrectly classified as having died

The True Positive Rate (aka sensitivity) is the proportion of passengers

who actually survived that were correctly classified as having survived.

The False Positive Rate (aka one minus the specificity) is the proportion

of passengers who actually died that were incorrectly classified as

having survived.
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 Confusion Matrices
Titanic Example

Classifier:

truth_+ truth_-

class_+ 82 38

class_- 260 511

{Yi = 1} ⟺ {π̂i > 0.5}

tp <- ((titanic$Survived == 1) * (fitted.values(glm_fare) > 0.5)) %>%1
fp <- ((titanic$Survived == 0) * (fitted.values(glm_fare) > 0.5)) %>%2

3
fn <- ((titanic$Survived == 1) * (fitted.values(glm_fare) < 0.5)) %>%4
tn <- ((titanic$Survived == 0) * (fitted.values(glm_fare) < 0.5)) %>%5

TPR: 0.2397661 
 
 FPR: 0.06921676
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 Confusion Matrices
Titanic Example

Classifier:

truth_+ truth_-

class_+ 14 6

class_- 328 543

{Yi = 1} ⟺ {π̂i > 0.9}

tp <- ((titanic$Survived == 1) * (fitted.values(glm_fare) > 0.9)) %>%1
fp <- ((titanic$Survived == 0) * (fitted.values(glm_fare) > 0.9)) %>%2

3
fn <- ((titanic$Survived == 1) * (fitted.values(glm_fare) < 0.9)) %>%4
tn <- ((titanic$Survived == 0) * (fitted.values(glm_fare) < 0.9)) %>%5

TPR: 0.04093567 
 
 FPR: 0.01092896
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 Performance of a Classifier
ROC Curves

So, we can see that our TPR and TNR will change depending on the

cutoff value we select for our classifier.

This gives us the idea to perhaps use quantities like TPR and TNR to

compare across different cutoff values.

Rather than trying to compare confusion matrices, it’s a much nicer idea

to try and compare plots.

One such plot is called a Receiver Operating Characteristic (ROC)
Curve, which plots the sensitivity (on the vertical axis) against (1 -

specificity) (on the horizontal axis)
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 ROC Curves
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We pick the cutoff to be that which makes the ROC curve as close to the

point (0, 1) as possible.

→ This indicates we should use a cutoff of around 33%
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 Performance of a Classifier
ROC Curves

Allow me to elaborate a bit more on this last point.

The vertical axis of a ROC curve effectively represents the probability of

a good thing; ideally, we’d like a classifier that has a 100% TPR!

Simultaneously, an ideal classifier would also have a 0% FPR (which is

precisely what is plotted on the horizontal axis of an ROC curve).
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 Performance of a Classifier
ROC Curves

ROC curves can also be used to compare across models as well.

Model 1: Using

Fare, Age, Sex, and

Cabin as

predictors

Model 2: Using

Fare and Age as

predictors

The ROC curve for model 1 is farther from the diagonal than model 2,

indicating that it is the better choice.
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⏭ Next Time

In lab today, you’ll explore classification a bit further.

→ Specifically, you’ll work through fitting a few logistic models and

building a few classifiers based on a non-simulated dataset

pertaining to dates (the fruit)

There will be no new material tomorrow; instead, we’ll review for ICA 02.

→ If you haven’t already, please read through the information

document I posted on the website pertaining to ICA 02.

→ As a reminder, all material (up to and including today’s lecture and

lab) is potentially fair game for the ICA, though there will be a

considerable emphasis on material from after ICA 01.

Also, recall you’ll be getting early-access to Lab08 solutions by going to

Section today!
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