
PCA ADDENDUM
PSTAT 100 - DATA SCIENCE: CONCEPTS AND ANALYSIS

INSTRUCTOR: Ethan P. Marzban

Asmentioned in lecture,Principal ComponentsAnalysis (PCA) is an incredibly rich and useful
topic! Given our limited time, we are only able to scratch the surface in PSTAT 100; you will
definitely learn more about PCA in your future PSTAT courses (like PSTAT 131/231). With that
said, I figured it may be useful to post this document compiling our (PSTAT 100) treatment
of PCA; I also include a bit of extra discussion on topics we didn’t get a chance to discuss in
Lecture but that I find useful to understand.

Required Packages / Setup

library(tidyverse) ## for plots and wrangling
library(reshape2) ## for melting data frames
library(ggokabeito) ## for using the Okabe-Ito color palette

Terminology and General Overview

Given a mean-centered data matrix X, we ask ourselves: is it possible to obtain a low-rank
approximation (aka reconstruction) of X that preserves as much information as possible? The
answer is, “yes!”

Specifically, we first asked ourselves: what is the unit vector v⃗ for which Xv⃗, the data pro-
jected along v⃗, has maximum variance over all possible v⃗? In other words, what is the solution
to the following constrained maximization problem:

arg max
v⃗

{
v⃗TXTXv⃗

}
s.t. v⃗Tv⃗ = 1 (1)

We found that solutions v⃗ to (1) must satisfy (X⃗TX)v⃗ = λv⃗; in other words, the solutions to
(1) are precisely the eigenvectors of XTX.

Insight

Why do we need mean-centered data? Because, we derived (1) by asserting that the
variance of Xv⃗ is simply proportional to

Var(Xv⃗) ∝ ∥Xv⃗∥2 = (Xv⃗)T(Xv⃗) = v⃗TXTXv⃗

But, this is true only if X is mean-centered!

The variance of Xv⃗, again assuming a mean-centered data matrix X, where v⃗ is a solution to
(1) is found to be proportional to λ, the associated eigenvalue. The justification is as follows

Var(Xv⃗) ∝= v⃗T(XTXv⃗) = v⃗T(λv⃗) = λv⃗Tv⃗ = λ

©Ethan Marzban; Summer Session A 2025 Page 1

Insight

The direction v⃗1 along which the projected data hasmaximum variance is the eigenvec-
tor of (XTX) with largest associated eigenvalue; the direction v⃗2 along which the pro-
jected data has second largest variance is the eigenvector of (XTX) with second largest
associated eigenvalue; etc. The variances of the data projected along these eigenvec-
tors are proportional to the corresponding eigenvalues.

Here is the terminology we are using in PSTAT 100:

• Theeigenvectorsof (XTX)wecall theprincipal components; their elements are called
the principal component lodaings (or just loadings)

• The data projected along the principal components we call the principal components
scores (or just scores)

Caution

The terminology is a bit varied - some people use “PC” to refer to what we are calling
the scores.

PCA in Practice

Obtaining the PCs

We saw that there are a couple of different ways to get the PCs:

• Using the V matrix from the eigendecomposition (EVD) of (XTX)
• Using the V matrix from the singular value decomposition (SVD) of X

As a sample illustration on data:

set.seed(100) ## for reproducibility
x1 <- rnorm(10); x2 <- rnorm(10); x3 <- rnorm(10)
X <- cbind(x1, x2, x3) %>% scale()

What this code does is create a (10 × 3) matrix of full rank by populating each column with a
randomly-selected set of numbers. To check that this matrix is indeed full rank:

qr(X)$rank

[1] 3

Here are the two ways we can extract out the PCs:

(pc_evd <- eigen(t(X) %*% X)$vectors)

[,1] [,2] [,3]
[1,] -0.5653468 0.62140323 0.5424399
[2,] -0.5117538 -0.77999087 0.3601699
[3,] -0.6469089 0.07397482 -0.7589708

©Ethan Marzban; Summer Session A 2025 Page 2

(pc_svd <- svd(X)$v)

[,1] [,2] [,3]
[1,] 0.5653468 0.62140323 0.5424399
[2,] 0.5117538 -0.77999087 0.3601699
[3,] 0.6469089 0.07397482 -0.7589708

Caution

Recall that, even after fixing them to be of unit norm, eigenvectors are unique only up
to a sign flip.

Another way to extract the PCs is using the prcomp() function:

(pc_prcomp <- prcomp(X, scale. = TRUE)$rotation)

PC1 PC2 PC3
x1 0.5653468 0.62140323 0.5424399
x2 0.5117538 -0.77999087 0.3601699
x3 0.6469089 0.07397482 -0.7589708

Obtaining the Scores

To find the scores, we (again) have three methods available to us:

• Compute XV
• Compute UΣ
• Use prcomp()

The equivalence of the first two is established by noting that if X = UΣVT (i.e. if we begin
considering the SVD of X), we have

XV = UΣVTV = UΣ

As an illustration to our same data matrix X from above (I have used prcomp() to extract out
the matrix of PCs, but recall that there are other ways to compute this as well!):

(scores_xv <- X %*% pc_prcomp)

PC1 PC2 PC3
[1,] -0.86938054 -0.43971072 -0.18111266
[2,] 0.92448154 0.38798804 -0.91685430
[3,] 0.05425138 0.37004934 -0.68074026
[4,] 2.07723422 0.64187409 0.07221006
[5,] -0.58608073 0.17438623 0.85435816
[6,] -0.11363220 0.57734188 0.56288248
[7,] -1.50464040 -0.12468274 -0.14142868
[8,] 1.24782869 0.59931933 0.41946613
[9,] -2.48133941 0.03375747 -0.10489104
[10,] 1.25127745 -2.22032292 0.11611009

©Ethan Marzban; Summer Session A 2025 Page 3

(scores_us <- svd(X)$u %*% diag(svd(X)$d))

[,1] [,2] [,3]
[1,] -0.86938054 -0.43971072 -0.18111266
[2,] 0.92448154 0.38798804 -0.91685430
[3,] 0.05425138 0.37004934 -0.68074026
[4,] 2.07723422 0.64187409 0.07221006
[5,] -0.58608073 0.17438623 0.85435816
[6,] -0.11363220 0.57734188 0.56288248
[7,] -1.50464040 -0.12468274 -0.14142868
[8,] 1.24782869 0.59931933 0.41946613
[9,] -2.48133941 0.03375747 -0.10489104
[10,] 1.25127745 -2.22032292 0.11611009

(scores_prcomp <- prcomp(X, scale. = TRUE)$x)

PC1 PC2 PC3
[1,] -0.86938054 -0.43971072 -0.18111266
[2,] 0.92448154 0.38798804 -0.91685430
[3,] 0.05425138 0.37004934 -0.68074026
[4,] 2.07723422 0.64187409 0.07221006
[5,] -0.58608073 0.17438623 0.85435816
[6,] -0.11363220 0.57734188 0.56288248
[7,] -1.50464040 -0.12468274 -0.14142868
[8,] 1.24782869 0.59931933 0.41946613
[9,] -2.48133941 0.03375747 -0.10489104
[10,] 1.25127745 -2.22032292 0.11611009

Obtaining the Variances

Finally, note (again) that there are three ways to obtain the variances of the scores:

• Using the Λ matrix from the EVD of (XTX)
• Using Σ2 from the SVD of X
• Using prcomp()

As an illustration to our same data matrix X from above (I have used prcomp() to extract out
the matrix of PCs, but recall that there are other ways to compute this as well!):

(vars_evd <- eigen(t(X) %*% X)$values / (nrow(X) - 1))

[1] 1.9809441 0.7291396 0.2899164

(vars_svd <- svd(X)$d^2 / (nrow(X) - 1))

[1] 1.9809441 0.7291396 0.2899164

(vars_prcomp <- prcomp(X, scale. = TRUE)$sdev^2)

[1] 1.9809441 0.7291396 0.2899164

©Ethan Marzban; Summer Session A 2025 Page 4

If we wanted to, we could verify these empirically by computing the variance of the scores
directly - for a large dataset, however, this would not be recommended:

(X %*% pc_prcomp) %>% apply(MARGIN = 2, FUN = var)

PC1 PC2 PC3
1.9809441 0.7291396 0.2899164

Reconstructions

Note that, given that X = UΣVT, we have that

(XV)VT = X

Motivated by this, let Vd denote the matrix whose columns are the first d principal compo-
nents; then

Xd := XVdVT
d

will be amatrix whose dimensions are the same asX but whose rank will be d. In this way, Xd

can be viewed as a low-rank approximation of X.

To illustrate, we can take our data matrix X from the previous coding examples (which has
rank 3) and obtain a two-dimensional (i.e. rank-2) approximation of X by performing the mul-
tiplication

X2 := X

 | |
v⃗1 v⃗2
| |

 [
− v⃗T

1 −
− v⃗T

2 −

]

(X_2_direct <- X %*% (pc_prcomp[,1:2]) %*% t(pc_prcomp[,1:2]))

x1 x2 x3
[1,] -0.7647391 -0.1019384 -0.59493753
[2,] 0.7637497 0.1704798 0.62675668
[3,] 0.2606207 -0.2608718 0.06247003
[4,] 1.5732203 0.5623765 1.39126383
[5,] -0.2229747 -0.4359487 -0.36624065
[6,] 0.2945205 -0.5084731 -0.03080092
[7,] -0.9281218 -0.6727540 -0.98258865
[8,] 1.0778749 0.1711174 0.85156602
[9,] -1.3818402 -1.2961653 -1.60270335
[10,] -0.6723102 2.3721776 0.64521454

(X_2_prcomp <- prcomp(X, scale. = T)$x[,1:2] %*% t(pc_prcomp[,1:2]))

x1 x2 x3
[1,] -0.7647391 -0.1019384 -0.59493753
[2,] 0.7637497 0.1704798 0.62675668
[3,] 0.2606207 -0.2608718 0.06247003
[4,] 1.5732203 0.5623765 1.39126383
[5,] -0.2229747 -0.4359487 -0.36624065
[6,] 0.2945205 -0.5084731 -0.03080092

©Ethan Marzban; Summer Session A 2025 Page 5

[7,] -0.9281218 -0.6727540 -0.98258865
[8,] 1.0778749 0.1711174 0.85156602
[9,] -1.3818402 -1.2961653 -1.60270335
[10,] -0.6723102 2.3721776 0.64521454

Just to check, let’s make sure this matrix is of rank 2:

qr(X_2_direct)$rank

[1] 2

Insight

ThematrixX2 is amatrixwith the samedimensions as theoriginal datamatrixX (namely,
10 × 3) but with lower rank.

Screeplots

It is, of course, typically impossible to find a low-rank reconstruction of a data matrix that is
exactly equal to the original matrix. As such, there is a tradeoff: if we use too low of a rank for
our reconstruction, we run the risk of obtaining a reconstruction that is too dissimilar to the
original matrix to be of any use. However, if we use too high of a rank (and therefore obtain a
very good approximation to our original datamatrix), we lose the benefit of dimension reduc-
tion - after all, if we wanted a perfect reconstruction of X with no regard to dimensionality,
we would have just picked X itself!

So, a natural question arises: what rank should we use in our reconstruction to (a) get some
benefit of dimension reduction, but (b) obtain a reconstruction that is close to our original
matrix? The answer is to look at a screeplot, which plots the proportion of total variance each
PC contributes. Specifically, the proportion of total variance explained by the kth PC (i.e. the
proportion of total variance that the kth score possesses) is given by

sk = λk∑
k λk

= σ2
k∑

k σ2
k

where λk is the kth eigenvalue of (XTX) and σk is the kth singular value of X. A screeplot
plots these values on the vertical axis and the dimension (rank) on the horizontal axis.

For example, the screeplot associated with our toy data matrix X is obtained using

s_k <- svd(X)$d^2 / sum(svd(X)$d^2)
data.frame(k = 1:ncol(X), y = s_k) %>% ggplot(aes(x = k, y = s_k)) +

geom_point(size = 3) + geom_line() + theme_minimal(base_size = 12) +
xlab("dimension") + ylab("prop. tot. var.") +
ggtitle("Screeplot")

©Ethan Marzban; Summer Session A 2025 Page 6

0.1

0.2

0.3

0.4

0.5

0.6

1.0 1.5 2.0 2.5 3.0
dimension

pr
op

. t
ot

. v
ar

.
Screeplot

We typically look for an “elbow” in the screeplot, indicating the dimension after which subse-
quent dimensions contribute neglibly toward the overall variance. Sometimes you will see an
alternative to the screeplot, which plots the cumulative proportion of variance explained by
the first k dimensions:

cumulative_vars <- (svd(X)$d^2 / sum(svd(X)$d^2)) %>% cumsum()
data.frame(k = 1:ncol(X), y = cumulative_vars) %>% ggplot(aes(x = k, y = cumulative_vars)) +

geom_point(size = 3) + geom_line() + theme_minimal(base_size = 12) +
xlab("dimension") + ylab("prop. tot. var.") +
ggtitle("Plot of Cumulative Proportions of Variance Explained")

0.7

0.8

0.9

1.0

1.0 1.5 2.0 2.5 3.0
dimension

pr
op

. t
ot

. v
ar

.

Plot of Cumulative Proportions of Variance Explained

©Ethan Marzban; Summer Session A 2025 Page 7

Mean-Centering vs. Standardizing

The final thing I’d like to mention (and this was something we didn’t get a chance to discuss
in lecture) is the difference betweenmean centering and standardizing a data matrix. Mean-
centering a data matrix means shifting each column to have mean zero; standardizing mean-
centers and also rescales columns to have unit variance.

To illustrate the importance of standardizing, let’s consider a simple mock dataset comprised
of 4 variables where the first three variables have roughly equal variance but the third has a
much higher variance:

set.seed(10) ## for reproducibility
y1 <- rnorm(1000); y2 <- rnorm(1000);
y3 <- rnorm(1000); y4 <- rnorm(1000, 0, 10)
Y <- cbind(y1, y2, y3, y4)
Y_mc <- Y %>% scale(, scale = FALSE) ## mean-centered only
Y_s <- Y %>% scale(, scale = TRUE) ## standardized

What the code above does is create two related matrices: the matrix Y_mc is only mean-
centered whereas the Y_smatrix is standardized. To be clear:

apply(Y_mc, MARGIN = 2, FUN = var)

y1 y2 y3 y4
0.9837508 1.0899816 1.0348379 107.6798320

Now, notice that our Y matrix is full rank (rank-4) with uncorrelated variables:

qr(Y)$rank

[1] 4

cor(Y)

y1 y2 y3 y4
y1 1.000000000 0.044251639 0.030991409 -0.001953145
y2 0.044251639 1.000000000 0.002562131 -0.043828881
y3 0.030991409 0.002562131 1.000000000 0.021962069
y4 -0.001953145 -0.043828881 0.021962069 1.000000000

What thismeans is that, intuitively, the four PCs should contribute roughly equally toward the
total variance. The screeplot of themean-centereddata, however, appears topaint a different
picture:

s_k_mc <- svd(Y_mc)$d^2 / sum(svd(Y_mc)$d^2)
data.frame(k = 1:4, y = s_k_mc) %>% ggplot(aes(x = k, y = s_k_mc)) +

geom_point(size = 3) + geom_line() +
xlab("dimension") + ylab("prop. tot. var.") +
theme_minimal(base_size = 12) + ggtitle("Screeplot of Mean-Centered Data")

©Ethan Marzban; Summer Session A 2025 Page 8

0.00

0.25

0.50

0.75

1.00

1 2 3 4
dimension

pr
op

. t
ot

. v
ar

.
Screeplot of Mean−Centered Data

Somehow, the screeplot is identifying the first PC as contributing an enormous amount to-
ward the total variance, when we know for a fact that this shouldn’t be the case. That is, the
contributions of the first PC are being drastically overstated.

The reason this is happening is because one of our variables has a much higher variance than
the others! If we take a look at the screeplot of standardized data in comparison to that of the
mean-centered data, we see a much better picture:

s_k_s <- svd(Y_s)$d^2 / sum(svd(Y_s)$d^2)

data.frame(x = 1:4,
`mean centered` = s_k_mc,
`standardized` = s_k_s,
check.names = F) %>%

melt(id.vars = 'x',
variable.name = "type") %>%

ggplot(aes(x = x, y = value)) +
geom_point(aes(colour = type), size = 3) +
geom_line(aes(colour = type), linewidth = 0.75) +
xlab("dimension") + ylab("prop. tot. var.") +
theme_minimal(base_size = 12) +
ggtitle("Screeplots of Mean-Centered and Standardized Data") +
scale_color_okabe_ito()

©Ethan Marzban; Summer Session A 2025 Page 9

0.00

0.25

0.50

0.75

1.00

1 2 3 4
dimension

pr
op

. t
ot

. v
ar

.

type

mean centered

standardized

Screeplots of Mean−Centered and Standardized Data

Insight

In PCA, certain variables may be overinflated in terms of influence based solely on the
fact that they have large variances. As such, it is a good idea to standardize our data
before performing PCA - not just mean-center it.

©Ethan Marzban; Summer Session A 2025 Page 10

	Required Packages / Setup
	Terminology and General Overview
	PCA in Practice
	Obtaining the PCs
	Obtaining the Scores
	Obtaining the Variances

	Reconstructions
	Screeplots
	Mean-Centering vs. Standardizing

