Lab 09: Regular [Expression] Show — SOLUTIONS

PSTAT 100, Summer Session A 2025 with Ethan P. Marzban

MEMBER 1 (NetID 1) MEMBER 2 (NetID 2)
MEMBER 3 (NetID 3)

July 24, 2025
Required Packages

library(ottr) # for checking test cases (i.e. autograding)
library(pander) # for nicer-looking formatting of dataframe outputs
library(tidyverse) # for graphs, data wrangling, etc.

Logistical Details

1 Logistical Details
e This lab is due by 11:59pm on Friday, July 25, 2025.

e Collaboration is allowed, and encouraged!

— If you work in groups, list ALL of your group members’ names and NetIDs (not Perm
Numbers) in the appropriate spaces in the YAML header above.

— Please delete any “MEMBER X” lines in the YAML header that are not needed.

— No more than 3 people in a group, please.

e Ensure your Lab properly renders to a .pdf; non-.pdf submissions will not be graded and
will receive a score of 0.

o Ensure all test cases pass (test cases that have passed will display a message stating "A11l
tests passed!")

Lab Overview and Objectives

Welcome to another PSTAT 100 Lab! In this lab, we will cover the following:

o Regular Expressions / Wrangling Text using R

PSTAT 100, Summer Session A 2025 Lab09 SOLUTIONS ©FEthan P. Marzban

Introduction

In this lab, we’ll explore some of the ways R can be used to wrangle text data. We’ll frequently be
referring to the script of Episode 2, titled “Just Set Up the Chairs” from the show Regular Show. As
a bit of background, Regular Show is a show that aired on Cartoon Network from 2010 until 2017,
and maintains an impressive rating of 8.6 on IMdB (the Internet Movie Database). We've selected the
script from a relatively early episode, which shouldn’t contain any major spoilers for the show (in case
you are inclined to watch it!). The script is stored in a file called script.txt, located in the data/
subfolder.

This chunk below reads in the script, and assigns the result to a vector called script:

script <- readLines("data/script.txt")

Here are the first few entires of the script vector:

script %>% head()

[1] "Benson: Alright, listen up. We've got this birthday party today, so...lots to do...lots to
[2] "

[3] "Muscle Man & Hi Five Ghost: Yes! Uh!"

[4] "

[6] "(Muscle Man and Hi Five Ghost high-five each other)"

[6] nn

Using stringr::str_subset()

One of the packages included in the tidyverse is the stringr package. This package provides a
plethora of functions useful when it comes to analyzing text data. The first function we’ll explore is
the str_subset () function.

From the relevant helpfile, “str_subset () returns all elements of string where there’s at least one
match to pattern.” For example,

sample_text <- c("My", "cat", "and", "your", "cat", "could", "be", "friends")
sample_text >/, str_subset("cat")

[1] "Cat" "Cat"

| Question 1

Using the str_subset() function and the length() function, calculate mow many lines of
dialogue Rigby (a character from Regular Show) has in the script. Assign your answer to a
variable called rigby_num_lines.

PSTAT 100, Summer Session A 2025 Lab09 SOLUTIONS ©FEthan P. Marzban

Solution:

replace this line with your code
rigby_num_lines <- script %>% str_subset("Rigby:") %>% length()

Answer Check:

DO NOT EDIT THIS LINE
invisible({check("tests/ql.R")})

All tests passed!

Another useful function is the str_count() function. Whereas str_subset() displays all subsets
containing a match to the pattern, str_count() displays the number of matches in each string. For
example:

counts the number of 'r's in each string:

c("cat", "dog", "rabbit", "parrot") %>%
str_count("r")

[1] 0012

| Question 2

Recompute the number of lines Rigby has in the script, this time using str_count(). Assign
your answer to a variable called rigby_num_lines2, and check that it agrees with your answer
to Question 1 above.

Solution:

replace this line with your code
rigby_num_lines2 <- script %>% str_count("Rigby:") %>% sum()

Answer Check:

DO NOT EDIT THIS LINE
invisible({check("tests/q2.R")})

All tests passed!

The logical “or” (|) works with strings as well! For example,

counts the number of times either 'a' or 'r' (or both) appear
c("cat", "dog", "rabbit", "parrot") %>%
str_count("al|r")

PSTAT 100, Summer Session A 2025 Lab09 SOLUTIONS ©FEthan P. Marzban

(1] 1023

| Question 3

How many times does Mordecai (another character in the show) say the word “dude”? Keep in
mind that R is case-sensitive. Assign your answer to a variable called mordecai_dude_count

Solution:

replace this line with your code
mordecai_dude_count <- script %>%

str_subset("Mordecai:") %>% ## look only at Mordecai's dialogue
str_count ("dude|Dude") %>% ## account for potential capitalization
sum() ## aggregate

Answer Check:

DO NOT EDIT THIS LINE
invisible({check("tests/q2.R")})

All tests passed!

Regular Expressions

Most of the functions from the stringr package, like str_subset (), contain a “pattern” argument
which is used for matching. For example, str_subset(string, pattern) extracts only subsets of
string that contain pattern. Up until now, we’ve been using a full string as the pattern - we often
call such a string a literal. Essentially, a literal character is one that is matched directly, with no
special meaning - most characters are like this. There do, however, exist metacharacters which have
special meaning in the context of text analysis.

These metacharacters exist within the universe of regular expressions. Regular expressions (often
abbreviated as regex, pronounced either with a hard ‘g’ or a soft ‘g’) are essentially a sequence of
symbols and characters designed to aid in the identification of particular patterns in strings. They
are an integral part of the analysis of text, though are sometimes considered to be the bane of data
scientists’ existences. We’ll only be scratching the surface in this lab, but if you are planning on
pursuing a career in data science I encourage you to read more on this topic.

Metacharacters
Wildcard
First, let’s discuss some common metacharacters. The first metacharacter we’ll cover is the period (.)

- this is used to match any single character, except a new line. For this reason, we often call this the
wildcard character. For example:

PSTAT 100, Summer Session A 2025 Lab09 SOLUTIONS ©FEthan P. Marzban

c("one.world", "one.species", "together") %>’
str_view(".")

[1] | <o><n><e><.><w><o><r><1><d>
[2] | <o><n><e><.><s><p><e><c><i><e><s>
[3] | <t><o><g><e><t><h><e><r>

Note that this is not returning only words/phrases with a period - again, this is because the period
is a metacharacter! If we wanted to escape the special meaning assocaited with the period (i.e. to
match a literal period), we can use \\.

c("one.world", "one.species", "together") %>’
str_view("\\.")

(1] | ome<.>world
[2] | one<.>species

@ Tip

The str_view() function works similarly to str_subset(), but in addition to only returning
strings that match the desired pattern it also highlighs the pattern using angled brackets (< ,

>).

Anchors

Two other common metacharacters are together referred to as anchors: ~ and $. ~ is used to indicate
the start of a string, and $ is used to indicate the end of a string. For example:

c("cat", "canteloupe", "bobcat", "silica", "toucan") %>%
str_view(""ca")

[1] | <ca>t
[2] | <ca>nteloupe

c("cat", "canteloupe", "bobcat", "silica", "toucan") %>%
str_view("ca$")

[4] | sili<ca>

We can combine the anchors and period to create more sophisticated patterns. For example, suppose
we want to find words whose third-to-last and second-to-last characters are ca:

PSTAT 100, Summer Session A 2025 Lab09 SOLUTIONS ©FEthan P. Marzban

c("cat", "canteloupe", "bobcat", "silica", "toucan") %>%
str_view("ca.$")

[1] | <cat>
[3] | bob<cat>
[5] | tou<can>

| Question 4

Part (a)
How many lines in the script contain stage directions? Assign your answer to a variable called
num_stage_dir. Hint: note that stage directions are always enclosed by parentheses.

Solution:

replace this line with your code
num_stage_dir <- script %>% str_subset("\\(") %>% length()

Answer Check:

DO NOT EDIT THIS LINE
invisible({check("tests/q4a.R")})

All tests passed!

Part (b)
How many stage directions appear on their own line (as in, not embedded within a larger line
of dialogue)? Assign your answer to a variable called num_stage_dir_sep_line.
Solution:
replace this line with your code
num_stage_dir_sep_line <- script %>/
str_subset (""\\ (") %>% length()
Answer Check:

DO NOT EDIT THIS LINE
invisible({check("tests/q4b.R")})

All tests passed!

PSTAT 100, Summer Session A 2025 Lab09 SOLUTIONS ©FEthan P. Marzban

Character Classes

Perhaps you noticed, when working on Question 3, parentheses and brackets are also metacharacters.
Square brackets ([, 1) create character classes, which can be used to match a set of characters

(i.e. identify strings that contain at least one of the elements in a set of characters). For example:

c("cat", "canteloupe", "bobcat", "silica", "toucan") %>%
str_view(" [aeiou] $")

[2] | canteloup<e>
[4] | silic<a>

@ Tip

As we start creating more and more sophisticated regular expressions, it is useful to be able to

“read the code in English.” For example, the above code chunk can be read as: “extract all strings
that end in a vowel.”

Now, as was discussed earlier in this lab, regular expressions (and, indeed, R in general) are case-
sensitive. For example:

c("Canteloupe", "cat") %>% str_view("ca")

[2] | <ca>t

Therefore, when dealing with text, there are two options available to us to address this:

1) We could convert everything to lowercase, using a function like stringr: :str_to_lower (). Not
always recommended

2) We could use character classes

3) We could specify ignore_case = TRUE in most of our commonly-used functions

Though, in practice, we would often opt for the third option, let’s investigate the second. For example,
to return all words beginning with a c followed by an a, regardless of case, we might use

c("Canteloupe", "CAnteloupe", "cAnteloupe") %>%
str_view(" [cC] [aAl")

[1] | <Ca>nteloupe
[2] | <CA>nteloupe
[3] | <cA>nteloupe

PSTAT 100, Summer Session A 2025 Lab09 SOLUTIONS

©Fthan P. Marzban

! Question 5

Solution:

replace this line with your code
num_vowel_end <- script %>%

Answer Check:

DO NOT EDIT THIS LINE
invisible({check("tests/q5.R")})

All tests passed!

How many lines of dialogue in the script end with a vowel (before their final punctuation mark)?
Assign your answer to a variable called num_vowel_end.

The key is to note that a non-stage-direction line of dialogue will always end with
either a period, exclaimation point, or question mark.

str_subset (" [aeiou] [\\.\\?\\!1$") %>% length()

Quantifiers

Quantifiers can be used to control the number of times a pattern can match:

e 7: (0 times or 1 time
e +: 1 or more times
e *x: () or more times

For example:
x <- c("a", “ab", "abb")

matches an "a", optionally followed by a "b"
str_view(x, "ab?")

[1] | <a>
[2] | <ab>
[3] | <ab>b

matches an "a", followed by at least one "b"
str_view(x, "ab+")

[2] | <ab>
[3] | <abb>

PSTAT 100, Summer Session A 2025 Lab09 SOLUTIONS

©Fthan P. Marzban

matches an "a", followed by any number of "b's

str_view(x, "abx")

[1] | <a>
[2] | <ab>
[3] | <abb>

We can also use curly braces ({, }) to specify the number of matches exactly:

e {n}: exactly n repetitions
e {n,}: m or more repetitions
e {n, m}: between n and m repetitions

y <= c("ab", "abb", "abbb", "abbbb", "abbbbb")

will match only with a double "b"
str_view(y, "b{2}")

[2] | a<bb>

[3] | a<bb>b

[4] | a<bb><bb>
[5] | a<bb><bb>b

will match with a sequence of two or more consecutive "b'"s
str_view(y, "b{2,}")

[2] | a<bb>
[3] | a<bbb>
[4] | a<bbbb>
[5] | a<bbbbb>

will match with a sequence of between 2 and 4 consecutive "b'"s
str_view(y, "b{2,4}")

[2] | a<bb>
[3] | a<bbb>
[4] | a<bbbb>
[5] | a<bbbb>b

! Question 6

punctuation mark)? Assign your answer to a vector called rep_vowel_end.

Which lines of dialogue in the script end with at least two consecutive vowels (before their final

PSTAT 100, Summer Session A 2025 Lab09 SOLUTIONS ©FEthan P. Marzban

Solution:
replace this line with your code
rep_vowel_end <- script %>%

str_subset (" [aeioul {2, F[\\.\\?\\!1$")
Answer Check:

DO NOT EDIT THIS LINE
invisible({check("tests/q6.R")})

All tests passed!

Somewhat confusingly, the caret (7) can also be used to negate a character class.

@ Tip

A caret outside of a character class is an anchor; a caret inside of a character class is a negation.

For example, to extract all words that do not begin with a vowel, we can use:

c("apple", "banana", "carrot", "durian") %>%
str_view("~ [Taeioul")

[2] | anana
[3] | <c>arrot
[4] | <d>urian

! Question 7

How many lines of dialogue end with something other than a vowel before their final punctuation?
Exclude stage directions; assign your answer to a variable called num_end_non_vowel.

Solution:

To exclude stage directions, we need to ensure the given string doesn’t begin with
a parenthesis.

replace this line with your code
num_end_non_vowel <- script %>7%

str_count ("~ [C\\(J .{1,}["aeiou] [A\N.\\?\\!1$") %>% sum()

Reading this out loud: starts with a non-parenthesis, followed by at least one
character, followed by a punctuation, followed by the end of the string.

Answer Check:

10

PSTAT 100, Summer Session A 2025 Lab09 SOLUTIONS ©FEthan P. Marzban

DO NOT EDIT THIS LINE
invisible({check("tests/q7.R")})

All tests passed!

Submission Details

Congrats on finishing this PSTAT 100 lab! Please carry out the following steps:

1 Submission Details

1) Check that all of your tables, plots, and code outputs are rendering correctly in your final
.pdf.

2) Check that you passed all of the test cases (on questions that have autograders). You’'ll
know that you passed all tests for a particular problem when you get the message “All tests
passed!”.

3) Submit ONLY your .pdf to Gradescope. Make sure to match ALL pages to the ONE
question on Gradescope; failure to do so will incur a penalty of 0.1 points.

Note on 4(a):

one <- script %>% str_extract("\\(.*\\)")
two <- script %>% str_extract("\\(")
script[(is.na(one) & !is.na(two)) %>% which()]

[1] "(Benson turns around at his wits end. Meanwhile, Mordecai is attempting to set up the chaiz

One line has an unclosed parenthetical

11

	Required Packages
	Logistical Details
	Lab Overview and Objectives
	Introduction
	Using stringr::str_subset()
	Regular Expressions
	Metacharacters
	Wildcard
	Anchors
	Character Classes
	Quantifiers

	Submission Details

