Lab 02: Bobabase SOLUTIONS

PSTAT 100, Summer Session A 2025 with Ethan P. Marzban

MEMBER 1 (NetID 1) MEMBER 2 (NetID 2)
MEMBER 3 (NetID 3)

June 26, 2025

Required Packages

library(ottr) # for checking test cases (i.e. autograding)
library(pander) # for nicer-looking formatting of dataframe outputs
library(tidyverse) # for graphs, data wrangling, etc.

Logistical Details

1 Logistical Details
e This lab is due by 11:59pm on June 27, 2025.

e Collaboration is allowed, and encouraged!

— If you work in groups, list ALL of your group members’ names and NetIDs (not Perm
Numbers) in the appropriate spaces in the YAML header above.

— Please delete any “MEMBER X” lines in the YAML header that are not needed.

— No more than 3 people in a group, please.

e Ensure your Lab properly renders to a .pdf; non-.pdf submissions will not be graded and
will receive a score of 0.

o Ensure all test cases pass (test cases that have passed will display a message stating "A11l
tests passed!")

Lab Overview and Objectives

Welcome to another PSTAT 100 Lab! In this lab, we will cover the following:

o Database basics

PSTAT 100, Summer Session A 2025 Lab02 SOLUTIONS ©FEthan P. Marzban

o Joining (merging) multiple data frames
o Pivoting (aka widening) data frames

Part I: Introduction to Databases

As you might imagine, a single file isn’t always enough to capture all of the data necessary for a
particular analysis. Sometimes, we need to consider a database: for the purposes of this class, we
can think of a database as simply being a collection of dataframes, all related in some way.

In this week’s lab we’ll don the persona of a financial analyst working for GauchoBubble, a new
up-and-coming boba shop. We are particularly interested in examining the revenue generated by
sales on a particular day at GauchoBubble. Available to us is a database called GauchoBubble,
which contains three files (each containing a single dataframe): orders.csv, inventory.csv, and
customers.csv. A brief description of these files (along with associated data dictionaries) is provided
below.

orders.csv: contains information on the orders placed during a particular day at GauchoBubble.
Variables included:

o ORDER_NO: an identifier for each order placed (orders containing multiple items are split across
multiple rows, with only one order in each row)

e ITEM_NO: a unique identifier of each item sold at GauchoBubble

e CUST_ID: a unique customer ID for customers included in GauchoBubble’s rewards program. If
a particular customer is not in the rewards program, a value of NA is recorded.

inventory.csv: contains information on the items sold at GauchoBubble. Variables included:

e ITEM_NO: a unique identifier of each item sold at GauchoBubble
e DESCRIP: a verbal description of each item sold at GauchoBubble

e PPU: the price-per-unit of each item sold at GauchoBubble

customers.csv: contains information on customers enrolled in the GauchoBubble rewards program.
Variables included:

e CUST_ID: a unique identifier for each customer
e FIRST_NAME: customer’s first name

e LAST_NAME: customer’s last name

e STATE: customer’s US state of residence

e BIRTH_MONTH: customer’s birth month

Here are the first few rows of the three data frames:

PSTAT 100, Summer Session A 2025 Lab02 SOLUTIONS ©FEthan P. Marzban

ORDERS: INVENTORY:
ORDER_NO ITEM_ID CUST_ID ITEM_NO DESCRIP PPU
1 T00 C25 T00 Taro; No Topping 5.25
1 T02 C25 To1 Taro; Boba 5.75
1 T02 C25 T02 Taro; Lychee 5.75
2 U0o0 NA T03 Taro; Egg Pudding 5.75
2 G03 NA Joo Jasmine Milk; No Topping 6.25
3 TO1 NA Jo1 Jasmine Milk; Boba 6.75
CUSTOMERS:
CUST_ID FIRST_NAME LAST_NAME STATE BDAY_MONTH
C1 John Smith CA Aug
C2 Sean Zhao WA May
C3 Abraham Wald CA Sep
C4 Xiao Li WA Nov
Ch Shirley Li CA Jul
C6 Olu Achebe OR Nov

| Question 1

Read in the orders.csv, inventory.csv, and customers.csv files (all located in a /data
subfolder). Assign these to variables called orders, inventory, and customers, respectively.

Solution:
replace this line with your code
orders <- read.csv('"data/orders.csv")

inventory <- read.csv("data/inventory.csv")
customers <- read.csv("data/customers.csv")

Answer Check:

DO NOT EDIT THIS LINE
invisible({check("tests/ql.R")})

All tests passed!

Database Terminology

Databases have a rich and complex theory. Much of the modern-day theory surrounding databases is at-
tributed to Edgar F. Codd, a scientist who developed a framework surrounding relational databases
while working at IBM, in the 60’s and 70’s. As this is not meant to be a class in database management,
we’ll only scratch the surface of databases - if you're curious to read more, much of Codd’s work is
summarized in his book titled “The Relational Model for Database Management”.

PSTAT 100, Summer Session A 2025 Lab02 SOLUTIONS ©FEthan P. Marzban

Here is the gist of things. Again, we can think of a database as being a collection of relations
(i.e. dataframes/tables) comprised of records (i.e. rows), where the relations are typically related in
some fashion. Each relation in a database has a unique primary key, which is the smallest set of
variables needed to uniquely determine the rows of the relation For example, the primary key of the
INVENTORY relation is {ITEM_NO}, as each item number corresponds to a unique row in the INVENTORY
relation.

However, the same cannot be said about the ORDERS relation. For example, if I tell you “show me
the row of the ORDERS relation that has item_no T02”, you won’t be able to do so because there
are multiple rows with item_no value equal to TO2. As such, we actually need all three of order_no,
item_id, and cust_id, to uniquely identify the rows of the ORDERS relation, and we set the primary
key to be the set {order_no, item_no, cust_id} (primary keys consisting of more than one variable
are sometimes referred to as compound keys).

A foreign key is a key (or set of keys) in one relation that corresponds to the primary key of a another
relation. Note that it is allowed for foreign keys to point to only one of the keys in a compound primary
key. For example, note that the ITEM_NO column from the INVENTORY table corresponds to the item_no
column in the ORDERS table: hence, we would say that the INVENTORY:ITEM_NO key (note the syntax
table_name:column_name) is a foreign key that points to ORDERS:item_no.

Joins

When working with databases, it is sometimes necessary/desired to combine one or more dataframes
in some way. For example, take the ORDERS dataframe: it currently only includes the unique identifier
of each product, and not the actual name of the product. Wouldn’t it be nice to include the product
names with each of the orders?

I think most of us can do this combination manually fairly easily:

ORDER_NO ITEM_ID CUST_ID DESCRIP
1 T00 C25 Taro; No Topping
1 T02 C25 Taro; Lychee
1 T02 C25 Taro; Lychee
2 U000 NA Ube; No Topping
2 G03 NA Original Milk; Egg Pudding
3 T01 NA Taro; Boba

But, how can we make R do this for us? To answer this question, let’s break down how we did this
combination manually. For example, focusing on the first row:

e We first used the ORDERS dataframe to look up the item_no of the first order.
e We then found that item_no in the INVENTORY dataframe.

e Finally, we looked up the DESCRIP of the corresponding item_no, and added this into the third
column of our ORDERS dataframe.

PSTAT 100, Summer Session A 2025 Lab02 SOLUTIONS ©FEthan P. Marzban

This is an example of what is known as a join (also known as a merge), in which we combine
information from multiple tables. The key idea is that we join on/along a foreign key relationship!

There are two main classes of joins: mutating joins and filtering joins. For now, let’s restrict our
considerations to mutating joins. As an illustrative example, we’ll consider the following two simple
tables:

X
y
ind_x var_x
_— ind_y varl_y var2_y
one a -
two b a cat piano
two c b dog piano
three c C rabbit violin
four d e snake viola
We can code these tables into R as dataframes:
x <- data.frame(
ind x = c("one", "two", "two", "three", "four"),
Var—x = C("a", IIbII’ llCII, “C", IIdll)

y <- data.frame(
ind_y - c(“a", ”b", "C”, ||eu),
varl_y = c("cat", "dog", "rabbit", "snake"),
var2y = c("piano", "piano", "violin", "viola")

Left join

Perhaps the most commonly-used join is that of a left join, which is used to add additional information
to a table. The syntax of a left join is:

left_join(

X,

Yy

by = join_by(var_x == ind_y)
)

ind_x var_x varl_y var2y

1 one a cat piano
2 two b dog piano
3 two c rabbit violin
4 three c rabbit violin
5 four d <NA> <NA>

PSTAT 100, Summer Session A 2025 Lab02 SOLUTIONS ©FEthan P. Marzban

Note that, by default, left_join(x, y, ...) includes all rows of x, but not necessarily all rows of y.
This means that the output of left_join(x, y, ...) will (almost) always have the same number
of rows as x.

O Caution

Left joins are not symmetric! That is: left_join(x, y) will not produce the same output as
left_join(y, x), as is indicated below:

left_join(

'

X,

by = join_by(ind_y == var_x)
)

ind_y varl_y var2y ind_x
1 a cat piano one
2 b dog piano two
3 c rabbit violin two
4 ¢ rabbit violin three
5 e snake viola <NA>

Inner Joins, Right Joins, and Full Joins
There are three other kinds of mutating joins: inner joins, right joins, and full joins. All of these

are similar to left joins in that they are used to augment existing dataframes with information sourced
from another dataframe; the key difference is in which rows are kept post-join.

Right joins keep all rows in y:

right_join(

by = join_by(var_x == ind_y)

ind_x var_x varl_y var2y

1 onme a cat piano
2 two b dog piano
3 two c rabbit violin
4 three c rabbit violin
5 <NA> e snake viola

Inner joins keep only rows present in both x and y:

PSTAT 100, Summer Session A 2025 Lab02 SOLUTIONS ©FEthan P. Marzban

inner_join(

X,

e

by = join_by(var_x == ind_y)
)

ind_x var_x varl_y var2y

1 onme a cat piano
2 two b dog piano
3 two c rabbit violin
4 three c rabbit violin

Full joins keep rows present in either x or y:

full_join(

X,

e

by = join_by(var_x == ind_y)
)

ind_x var_x varl_y var2y

1 onme a cat piano
2 two b dog piano
3 two c rabbit violin
4 three c rabbit violin
5 four d <NA> <NA>
6 <NA> e snake viola

Let’s return to our GauchoBubble database. Suppose we want to join the OBJECT and INVENTORY
dataframes to include the order information as well as the item descriptions and price-per-units, to
obtain a new dataframe with columns order_no, item_no, DESCRIP, and PPU, in that order. In
other words, we want to create a table whose first few rows look like this:

ORDER_NO ITEM_ID CUST_ID DESCRIP PPU
1 T00 C25 Taro; No Topping 5.25
1 T02 C25 Taro; Lychee 5.75
1 T02 C25 Taro; Lychee 5.75
2 U0o NA Ube; No Topping 7.00
2 G03 NA Original Milk; Egg Pudding 5.75
3 T01 NA Taro; Boba 5.75

PSTAT 100, Summer Session A 2025 Lab02 SOLUTIONS ©FEthan P. Marzban

! Question 2

A) Which type/s of joins could be used to accomplish this? (If the desired table could be
created using several choices of joins, be sure to list them all.)

Solution, part (A):

Replace this line with your answers

Since we want to preserve all rows of the orders relation, it makes sense to use a
left join.

B) Now, perform the join. (If you believe there are multiple potential joins we could use, pick
one; that is, you do not have to redo the join multiple times). Assign the result to a variable
called orders_items.

Solution, part (B) :

replace this line with your code
orders_items <- orders 7%>%
left_join(
inventory,
by = join_by(ITEM_ID == ITEM_NO)
)

Answer Check:

DO NOT EDIT THIS LINE
invisible({check("tests/q2.R")})

All tests passed!

Total Revenue

Something that might be of interest is the total revenue generated by sales at GauchoBubble on the
day in question.

! Question 3

A) Compute the total revenue generated by each type of item (e.g. display the total amount
generated by sales of Taro with No Topping, the total amount generated by sales of Taro
with Boba, etc.) Assign the resulting dataframe to a variable called sales_by_product.
Ensure that the names of your sales_by_product dataframe are ITEM_ID and NET_REV,
respectively.

Solution:

PSTAT 100, Summer Session A 2025 Lab02 SOLUTIONS ©FEthan P. Marzban

replace this line with your code
sales_by_product <- orders_items 7>
group_by(ITEM_ID) %>
summarise (NET_REV = sum(PPU))

Answer Check:

DO NOT EDIT THIS LINE
invisible({check("tests/q3.R")})

All tests passed!

B) Display the entirety of your sales_by_product dataframe, arranged in descending order
of net revenue. Use this to identify which item generated the most revenue, and which
item generated the least.

Solution:

replace this line with your code
sales_by_product %>% arrange(desc(NET_REV))

A tibble: 16 x 2
ITEM_ID NET_REV

<chr> <dbl>
1 UOO 133
2 TO2 74.8
3 GO3 69
4 U02 60
5 TO3 b7.5
6 JO2 54
7 UO1 52.5
8 TOO 47.2
9 GO1 40.2
10 GOO 36.8
11 U003 30
12 GO2 28.8
13 JO1 20.2
14 JOO 18.8
15 TO1 17.2
16 JO3 13.5

We can see that item U00, Ube with No Toppings, generated the most revenue
($133 in total) and item J03, Jasmine with Egg Pudding, generated the least ($13.5)

Answer Check:
There is no autograder for this question; your TA will manually check that your answers are
correct.

PSTAT 100, Summer Session A 2025 Lab02 SOLUTIONS ©FEthan P. Marzban

Customer-Related Considerations

So far we’ve investigated revenue; let’s start investigating customers.

! Question 4

How many customers that arrived in the store (on the day during which the data was collected)
had a rewards account? (Recall that the information about customers in the rewards account is
found in the customers relation.)

Solution:
There are a couple of different ways to go about this. Here is one:

replace this line with your code

orders %>% ## join orders and customers
left_join(
customers,
by = join_by(CUST_ID)
) h>%h
select (CUST_ID) %>% ## select the CUST_ID column
unique () %>% ## remove duplicates
na.omit() %>% ## remove NAs
nrow () ## count the number of rows
[1] 16

Answer Check:
There is no autograder for this question; your TA will manually check that your answers are

correct.

| Question 5

Customers from which state generated the most revenue? Justify your answer using the data!

Solution:

Again, there are a couple of different ways to go about this. The key is to note that we
need to merge all three relations: the orders relation contains the sales information,
the customers relation contains the state information, and the inventory relation
contains the price information.

10

PSTAT 100, Summer Session A 2025 Lab02 SOLUTIONS ©FEthan P. Marzban

replace this line with your code
orders %>%
left_join(
customers,
by = join_by(CUST_ID)
) %%
left_join(
inventory,
by = join_by(ITEM_ID == ITEM_NO)
) >
group_by(
STATE
) h>h
summarise (
NET_REV = sum(PPU)
) %>% arrange(desc(NET_REV))

A tibble: 8 x 2
STATE NET_REV
<chr> <dbl>

1 <NA> 535
2 CA 103
3 WA 28.8
4 AZ 26.2
5 NY 24.2
6 ID 16.8
7 OR 12
8 NM 7.5

Answer Check:
There is no autograder for this question; your TA will manually check that your answers are
correct.

Part 1I: Combining Commands

Let’s continue investigating the customers in the rewards program. One thing that might be interest-
ing is to construct a sort of contingency table, indicating the number of customers with different
birthday-month and origin-state pairs. That is, let’s work toward constructing a table that looks
like:

AZ CA ID

Jan 0 0 0
Feb 0 2 0
Mar 0 0 0

11

PSTAT 100, Summer Session A 2025 Lab02 SOLUTIONS ©FEthan P. Marzban

Doing so will require us to review some material from earlier in this week, and will also give us a
chance to practice a new dataframe transformation.

| Question 6

What variable type is BDAY_MONTH? (Phrase your answer in terms of the variable classification
scheme discussed in Lecture 01.) What data type (in R) should we use to store the information
encoded in the BDAY_MONTH? (If you aren’t familiar with the data types in R, please consult the
optional Lab00 linked on the course website.)

After answering the above questions, make a copy of the customers data frame called
customers2, and change the data type of the customers2$BDAY_MONTH variable to the ap-
propriate data type. IMPORTANT: DO NOT CHANGE YOUR ORIGINAL customers
DATAFRAME, AS DOING SO MAY RESULT IN PROBLEMS WITH THE AUTOGRADER.

Solution: Replace this line with your answer
The variable is ordinal, meaning we should use an ordered factor.

replace this line with your code

customers?2 <- customers

customers2$BDAY_MONTH <- factor(customers2$BDAY_ MONTH,
ordered = T,
levels = month.abb)

Answer Check:

DO NOT EDIT THIS LINE
invisible({check("tests/q6.R")})

All tests passed!

The next step in creating our contingency table is to compute the counts of each month-state pair.

! Question 7

Compute the number of customers in the rewards program with each bday-month and origin-
state combination. That is, create a table that displays: the number of CA residents born in Jan,
the number of CA residents born in Feb, etc. As a hint, the first few rows of your table should
look like this:

STATE BDAY_MONTH count

A7 Oct 1
AZ NA 1

12

PSTAT 100, Summer Session A 2025 Lab02 SOLUTIONS ©FEthan P. Marzban

CA Feb 2
CA Apr 1
CA Jul 2
CA Aug 2

Assign your answer to a variable called month_state_counts, and display the first few rows of
the month_state_ counts dataframe.

Solution:

replace this line with your code
month state_counts <- customers2 %>%
group_by(
STATE, BDAY_MONTH
) %%
summarise (
count = n()

“summarise ()~ has grouped output by 'STATE'. You can override using the
T.groups argument.

head (month_state_counts)

**

A tibble: 6 x 3
Groups: STATE [2]
STATE BDAY_MONTH count

<chr> <ord> <int>
1 AZ Oct 1
2 AZ <NA> 1
3 CA Feb 2
4 CA Apr 1
5 CA Jul 2
6 CA Aug 2

Answer Check:

DO NOT EDIT THIS LINE
invisible({check("tests/q7.R")})

All tests passed!

Finally, we need to transform our month_state_counts dataframe into the contingency table we set
out to create. Doing so will require us to pivot (aka widen) our dataset, which is in essence the

13

PSTAT 100, Summer Session A 2025 Lab02 SOLUTIONS ©FEthan P. Marzban

inverse of melting (which we discussed in Lecture 02).

Whereas melting takes column names and coerces them into entries in the table, pivoting takes entries
in a table and pulls them into column names. For example, consider the following toy dataframe:

df2 <- data.frame(
group - C(llAll, IIAH’ IIBII’ ||Bll),
animal = c("Cat", "Dog", "Cat", "Dog"),
counts = c(2, 3, 4, 1)

df2 %>% pander()

group animal counts
A Cat 2
A Dog 3
B Cat 4
B Dog 1

Pivoting the dataframe (using the pivot_wider () function from the tidyverse) results in:

df2 %>% pivot_wider(
names_from = c(group),
values_from = counts

) %>% pander ()

animal A B
Cat 2
Dog 3 1

! Question 8

Pivot the month_state_counts dataframe to create the desired contingency table. Place birth
months as rows and states as columns, and arrange the table in ascending order of birth month.

Solution:

replace this line with your code
month_state_counts %>
pivot_wider(
names_from = c(STATE),
values_from = count
) %>% arrange (BDAY_MONTH)

A tibble: 13 x 10

14

PSTAT 100, Summer Session A 2025 Lab02 SOLUTIONS

©Fthan P. Marzban

Answer Check:

correct.

BDAY_MONTH AZ

<ord> <int>
1 Jan NA
2 Feb NA
3 Mar NA
4 Apr NA
5 May NA
6 Jun NA
7 Jul NA
8 Aug NA
9 Sep NA
10 Oct 1
11 Nov NA
12 Dec NA
13 <NA> 1

CA
<int>
NA

2

NA

1

NA
NA

2

2

NA

NA

ID
<int>
NA
NA
NA
NA
NA
NA
1
NA
1
NA
NA
NA
NA

IL
<int>
NA
NA
NA
1
NA
NA
NA
NA
NA
NA
NA
NA
NA

NM
<int>
1
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

NY
<int>
1
NA
NA
NA
NA
2
NA
NA
1
NA
NA
1
NA

OR
<int>
NA
NA
1
NA
NA
NA
NA
NA
NA
NA
1
NA
NA

WA
<int>
NA
NA
NA
NA
1
NA
NA
1
1
NA

NA

WYy
<int>
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

NA

There is no autograder for this question; your TA will manually check that your answers are

Submission Details

Congrats on finishing this PSTAT 100 lab! Please carry out the following steps:

.pdf.

passed!”.

1 Submission Details

1) Check that all of your tables, plots, and code outputs are rendering correctly in your final

2) Check that you passed all of the test cases (on questions that have autograders). You’ll
know that you passed all tests for a particular problem when you get the message “All tests

3) Submit ONLY your .pdf to Gradescope. Make sure to match pages to your questions -
we’ll be lenient on the first few labs, but after a while failure to match pages will result in
point penalties.

15

	Required Packages
	Logistical Details
	Lab Overview and Objectives
	Part I: Introduction to Databases
	Database Terminology
	Joins
	Left join
	Inner Joins, Right Joins, and Full Joins

	Total Revenue
	Customer-Related Considerations

	Part II: Combining Commands
	Submission Details

