
Lab 01: Welcome to the tidyverse! SOLUTIONS
PSTAT 100, Summer Session A 2025 with Ethan P. Marzban

MEMBER 1 (NetID 1) MEMBER 2 (NetID 2)
MEMBER 3 (NetID 3)

June 24, 2025

Required Packages

library(ottr) # for checking test cases (i.e. autograding)
library(pander) # for nicer-looking formatting of dataframe outputs
library(tidyverse) # for graphs, data wrangling, etc.

Logistical Details

Logistical Details

• This lab is due by 11:59pm on Wednesday, June 25, 2025.

• Collaboration is allowed, and encouraged!

– If you work in groups, list ALL of your group members’ names and NetIDs (not Perm
Numbers) in the appropriate spaces in the YAML header above.

– Please delete any “MEMBER X” lines in the YAML header that are not needed.
– No more than 3 people in a group, please.

• Ensure your Lab properly renders to a .pdf; non-.pdf submissions will not be graded and
will receive a score of 0.

• Ensure all test cases pass (test cases that have passed will display a message stating "All
tests passed!")

Lab Overview and Objectives

Welcome to our first official PSTAT 100 Lab! In this lab, we will cover the following:

• Reading in data of different filetypes

1

PSTAT 100, Summer Session A 2025 Lab01 SOLUTIONS ©Ethan P. Marzban

• Manipulating and summarizing data using the tidyverse package.

How do Labs Work?

You are encouraged to complete as much of the lab as possible during our biweekly 50-minute
Lab Sessions. Having said that, we would much rather you work through the labs carefully and
completely without feeling the need to rush things, which is why the Labs are not due until
Wednesdays.

Typically, lab assignments will focus on the programming side of the course. This will often entail
extending concepts discussed in Lecture, and occasionally involve introducing some new concepts
as well. Please keep in mind that Lab material is potentially testable on the In-Class Assessments.

You are highly encouraged to ask your TA questions during Section and/or Office Hours!

Part I: Reading In Data

Filetypes and File Extensions

Recall that rectangular data is most often stored in tabular form. Tables, as we colloquially refer
to them, however, contain extraneous formatting information (e.g. border widths, cell padding, etc.),
that don’t actually provide much information when it comes to computation and/or analysis. As such,
when storing data in a file, we often strip down the data to its most basic forms.

We really only need to specify two things when structuring a table: how rows are separated, and how
cells within each row are separated. In most files, new rows of a table are separated by a new row in
the raw data file. There is, however, a fair amount of flexibility in how the separation of cells in a
dataset are indicated.

Filetype refers to how how cells (i.e .values) are separated in a given file. Two popular filetypes are:

• Comma-Separated Values (CSV): values are separated by commas

• Tab-Separated Values (TSV): values are separated by tabs

When saving our file, we use the file extension to indicate the filetype: for instance, a file called
my_data.csv will be stored as a CSV file, whereas a file called my_data.tsv will be stored as a TSV
file.

Reading In Data

Storing data in raw files is all well and good, but most often we’d like to read the data contained in a
file into R! There are actually several functions we can use in R to read in files. The most general one
is the read.table() function.

2

PSTAT 100, Summer Session A 2025 Lab01 SOLUTIONS ©Ethan P. Marzban

Question 1

Look up the help file for read.table() (consult the optional Lab 0 if you need help figuring our
how to do this!). Explain, in words, how you specify the filetype of a file when reading it into
R using read.table() (i.e. what argument controls the filetype? what sorts of values can this
argument take?)

Solution:
It is the sep argument that allows us to differentiate different filetyeps. Specifically, we pass the
separator value to the sep argument; e.g. sep = "," for .CSV files, sep = "\t" for .TSV files,
etc.

Because CSV files are so common, there is actually a separate function in R called read.csv(), used
to read in CSV files. (We encourage you to look up the help file for this function as well!)

Note that both the read.table() and read.csv() functions have a file argument. From the help
file, we can see that the file argument is:

“the name of the file which the data are to be read from. Each row of the table appears as
one line of the file. If it does not contain an absolute path, the file name is relative to the
current working directory, getwd()”.

What this means is that running read.csv("my_data.csv") will attempt to read in a file called
my_data.csv that is located in your current working directory. If no such file exists, R will return an
error.

The reason I highlight this is because it is common to include all relavant data files in a subfolder of
your working directory. That is, it is common to have a working directory file structure like:

+--- Main Folder
¦--- analysis.R
|--- data

|--- my_file.csv

In this case, if you are in the analysis.R file and your working directory is the Main Folder, then to
read in the my_file.csv file you should use read.csv("data/my_file.csv").

Tip

To set the working directory in R, click on the Session dropdown menu at the top of RStudio,
navigate to the Set Working Directory submenu, and select the desired option.

Cats Dataset

In lecture, we briefly discussed a dataset collected by several UK veterenarians. From the data
dictionary (accessible, along with the raw data, at this site), the dataset contains the following
variables:

3

https://rvc-repository.worktribe.com/output/1377557

PSTAT 100, Summer Session A 2025 Lab01 SOLUTIONS ©Ethan P. Marzban

• Cat ID: a unique identifier for each cat
• RSD: confirmed/unconfirmed cases of recurrent seizure status
• Epilepsy: whether the given cat had epilepsy or not
• Breed: the breed of the cat
• Age: age of the cat, in years
• Sex: sex of the cat
• Neutered: whether the cat was neutered or not
• Insured: whether the cat was insured or not

Question 2

The above-described dataset is included in a file called cats_data.csv, located in the data
subfolder. Read in the cats dataset, and assign it to a variable called cats. (We will use this
dataset later in the lab.)

Solution:

cats <- read.csv("data/cats_data.csv")

DO NOT EDIT THIS LINE
invisible({check("tests/q2.R")})

All tests passed!

Part II: Transforming and Grouping Dataframes

R has many functions dedicated to the transformation, aggregation, and analysis of dataframes. Many
of these can be found in in the dplyr package (often pronounced like ‘d-plier’), which is part of the so-
called tidyverse. The tidyverse is technically a collection of several R packages (a full list of included
packages can be found on the official tidyverse website), and is primarily used to clean, manipulate,
and tidy datasets. In this section of the lab, we will focus on the data transformation functionality
of the tidyverse.

I always find examples to be illustrative! As such, here is a (mock) dataset, containing the final scores
of 10 students in a fictitious PSTAT course, for illustrative purposes:

pstat_grades <- data.frame(
student_id = 1:10,
major = c("PSTAT", "PSTAT", "PSTAT", "PSTAT", "PSTAT",

"Comm", "Comm", "Comm", "Econ", "Econ"),
final_grade = c(87.2, 89.2, 92.5, 97.7, 40.1, 85.7, 95.5, 77.1, 82.1, 99.1)

)

pstat_grades %>% pander()

4

https://www.tidyverse.org/

PSTAT 100, Summer Session A 2025 Lab01 SOLUTIONS ©Ethan P. Marzban

student_id major final_grade
1 PSTAT 87.2
2 PSTAT 89.2
3 PSTAT 92.5
4 PSTAT 97.7
5 PSTAT 40.1
6 Comm 85.7
7 Comm 95.5
8 Comm 77.1
9 Econ 82.1
10 Econ 99.1

Filtering and Rearranging Rows

Suppose we want to filter out rows of a dataset that do not match some constraint. For instance,
say we only want to access the rows of the pstat_grades dataframe corresponding to students in the
PSTAT major. We can do so using the filter() function:

filter(pstat_grades,
major == "PSTAT")

student_id major final_grade
1 1 PSTAT 87.2
2 2 PSTAT 89.2
3 3 PSTAT 92.5
4 4 PSTAT 97.7
5 5 PSTAT 40.1

We can perform more complex filtering by utilizing the logical connectors available to us in R (i.e. &
and |). For example, to display only the rows of PSTAT majors scoring above 90, we would run

filter(pstat_grades,
(major == "PSTAT") & (final_grade > 90))

student_id major final_grade
1 3 PSTAT 92.5
2 4 PSTAT 97.7

Note that the filter() function does not change the order of rows. If we wanted to change the order
of rows in a dataset, we can use the arrange() function. For instance, to rearrange the rows of the
pstat_grades dataset to be in descending order of final_grade, we would use

arrange(pstat_grades,
desc(final_grade))

5

PSTAT 100, Summer Session A 2025 Lab01 SOLUTIONS ©Ethan P. Marzban

student_id major final_grade
1 10 Econ 99.1
2 4 PSTAT 97.7
3 7 Comm 95.5
4 3 PSTAT 92.5
5 2 PSTAT 89.2
6 1 PSTAT 87.2
7 6 Comm 85.7
8 9 Econ 82.1
9 8 Comm 77.1
10 5 PSTAT 40.1

We can actually arrange based on non-numerical columns as well:

arrange(pstat_grades,
desc(major))

student_id major final_grade
1 1 PSTAT 87.2
2 2 PSTAT 89.2
3 3 PSTAT 92.5
4 4 PSTAT 97.7
5 5 PSTAT 40.1
6 9 Econ 82.1
7 10 Econ 99.1
8 6 Comm 85.7
9 7 Comm 95.5
10 8 Comm 77.1

Can you tell what criterion R is using when it rearranges the columns based on a non-numerical
column?

Question 3

Let’s return to the cats dataframe we created above. Filter the dataframe to only include infor-
mation only from Domestic Medium Hair (note the spelling and the spaces!) cats; additionally,
sort the rows in descending order of age Store this in a variable called dmh_sorted_by_age, and
display the first 4 rows of the dmh_sorted_by_age dataframe.

Solution:

dmh_sorted_by_age <- arrange(
filter(cats, Breed == "Domestic Medium Hair"),
desc(Age)

)

Answer Check:

6

PSTAT 100, Summer Session A 2025 Lab01 SOLUTIONS ©Ethan P. Marzban

DO NOT EDIT THIS LINE
invisible({check("tests/q3.R")})

All tests passed!

The Pipe Operator

Let’s take a quick interlude to discuss what is (arguably) one of the most important operators in R:
the pipe operator (%>%), more formally known as the magrittr pipe operator.

I like to think of the pipe operator as being akin to a composition of two functions (remember that
from Precalculus?) Recall that the composition of two functions 𝑓() and 𝑔() is notated

(𝑓 ∘ 𝑔)(𝑥) ∶= 𝑓(𝑔(𝑥))
We can see that using the composition operator can help avoid the headache of multiple parentheses.

The pipe operator works much in the same way: it allows us to “unpack” expressions that would
otherwise involve series of nested inputs. Loosely speaking, the pipe operator squeezes (pipes) what
is on the left hand side to the first argument of whatever is on the RHS. For example:

c(1, 2, 3) %>% sum()

[1] 6

is completely equivalent to

sum(c(1, 2, 3))

[1] 6

We can get fancy, and use multiple pipe operators in succession:

pstat_grades %>%
filter(major %in% c("PSTAT", "Econ")) %>%
nrow()

[1] 7

We can see that the pipe operator has an additional advantage over just making our code more readable:
it also mimics the workflow that we typically envision while running our code. For instance, the code
above is returning the number of students in the pstat_grades dataframe whose major was either
PSTAT or Econ. Using the pipe operator (like we did) makes our workflow clear:

• take the pstat_grades dataframe,
• filter out rows to leave only those with major value equal to either "PSTAT" or "Econ",
• and count the number of rows of the resulting dataframe.

7

PSTAT 100, Summer Session A 2025 Lab01 SOLUTIONS ©Ethan P. Marzban

Note

There are actually two famous R pipe operators: the magrittr pipe (%>%, named after the
magrittr package in which it is found) and the base pipe (|>), which can be used without
loading in any additional packages. (Technically, the magrittr package contains even more
pipes, but these are less commonly-used.)

Column-wide Operations

Filtering and arranging can be thought of as row-wide application; that is to say, the filter() and
arrange() functions work by operating on the rows of a dataframe. There are a handful of column-
wide operations that are of use to us as well. We’ll return to these periodically throughout the course
- for now, I’d like to introduce you to the select() function.

As the name suggests, the select() function is used primarily to select columns of a dataframe
according to a set of specified criteria. I find the select() column most useful when we want to select
a series of columns by name. Recall that it is quite easy to select a single column of a dataframe, using
the $ operator:

pstat_grades$final_grade

[1] 87.2 89.2 92.5 97.7 40.1 85.7 95.5 77.1 82.1 99.1

If we wanted to select multiple columns by name, however, we cannot simply use the $ operator. (If
we knew the column indices of the desired columns we could use indexing/slicing, however with very
large datasets it becomes unrealistic to suppose we know the column indices of any desired column by
name.) We can, however, use select():

pstat_grades %>%
select(major, final_grade)

major final_grade
1 PSTAT 87.2
2 PSTAT 89.2
3 PSTAT 92.5
4 PSTAT 97.7
5 PSTAT 40.1
6 Comm 85.7
7 Comm 95.5
8 Comm 77.1
9 Econ 82.1
10 Econ 99.1

8

PSTAT 100, Summer Session A 2025 Lab01 SOLUTIONS ©Ethan P. Marzban

Question 4

In our cats dataset, we aren’t particularly concerned with the RSD (recurrent seizure disorder)
status of each cat. Additionally, the Insured column doesn’t seem to have much information.
As such, select all columns except the RSD and Insured columns, and assign the new dataframe
to a variable called cats_simplified.

Solution:

cats_simplified <- cats %>% select(!c(RSD, Insured))

Answer Check:

DO NOT EDIT THIS LINE
invisible({check("tests/q4.R")})

All tests passed!

Grouping a Dataframe

Finally, let’s talk about what is perhaps one of the most important dataframe operations: grouping.

As an example, let’s (again) return to our pstat_grades dataframe. Suppose we want to compute
the average (mean) final grade within each of the 3 majors represented in the dataset. That is, we’d
like to create a table that contains the average final grade of PSTAT students, the average final grade
of Communications students, and the average final grade of Economics students.

There are many ways we could do this, one of which includes looping through the different majors.
However, the “cleanest” (i.e. most succinct) way to achieve our desired goal is to group by major. Ad-
mittedly, grouping is a somewhat abstract concept, largely because the group_by() function operates
almost entirely internally. For example:

pstat_grades %>%
group_by(major)

A tibble: 10 x 3
Groups: major [3]

student_id major final_grade
<int> <chr> <dbl>

1 1 PSTAT 87.2
2 2 PSTAT 89.2
3 3 PSTAT 92.5
4 4 PSTAT 97.7
5 5 PSTAT 40.1
6 6 Comm 85.7
7 7 Comm 95.5
8 8 Comm 77.1

9

PSTAT 100, Summer Session A 2025 Lab01 SOLUTIONS ©Ethan P. Marzban

9 9 Econ 82.1
10 10 Econ 99.1

It doesn’t really look like anything has changed! But, that is only because the many changes that have
taken place took place behind the scenes: now, the dataframe is charged and ready to apply functions
across groups. For example, to compute the average final grades across majors, we can use:

pstat_grades %>%
group_by(major) %>%
summarise(avg_grade = mean(final_grade))

A tibble: 3 x 2
major avg_grade
<chr> <dbl>

1 Comm 86.1
2 Econ 90.6
3 PSTAT 81.3

Appreciating the Pipe

By the way, I’d like to take a moment and have us all appreciate the heavy lifting the pipe
operator is doing in the above command! We could technically have written the same code
without the pipe operator as:

summarise(group_by(pstat_grades, major), avg_grade = mean(final_grade))

A tibble: 3 x 2
major avg_grade
<chr> <dbl>

1 Comm 86.1
2 Econ 90.6
3 PSTAT 81.3

But notice how clunky and awkward that code syntax is - there are a lot of parentheses flying
about, and difficult to see exactly how we can break the code across lines. Additionally, as
mentioned previously, the order in which the functions are being applied has been “mixed up” a
bit.

Question 5

Let’s return to the original cats dataframe. Compute the median age of each breed of cat
represented in the dataset. (For practice, use the pipe operator.) Store this table in a variable
called median_ages, and ensure that the column names are Breed_Name and Median_Age (as a
hint, look up the help file for the rename() function!). Important: do not try to resolve any
issues pertaining to missing values; we’ll handle those in the next few questions.

10

PSTAT 100, Summer Session A 2025 Lab01 SOLUTIONS ©Ethan P. Marzban

Solution:

median_ages <- cats %>%
group_by(Breed) %>%
summarise(Median_Age = median(Age)) %>%
rename(Breed_Name = Breed)

Here are the first few rows:

head(median_ages, 10)

A tibble: 10 x 2
Breed_Name Median_Age
<chr> <dbl>

1 ***** 0.153
2 - 2.26
3 ??? 0.233
4 Abbysian 8.14
5 Abysinnian Cross 17.7
6 Abyssinian NA
7 Abyssinian X NA
8 Abyssinian X Bengal 10.2
9 Abyssinian x Siamese 3.79
10 Abyssinian/Tabby 5.18

Answer Check:

DO NOT EDIT THIS LINE
invisible({check("tests/q5.R")})

All tests passed!

This reveals that there are missing values in the both the Age and Breed columns.

Question 6

How are missing values encoded in the Breed column? (In other words, what symbols are being
used to indicate that a particular Breed value is missing?) Are there any missing values in the
Age column? How can you tell?

Solution:
From a cursory glance at our median_ages table, it seems that missing values in the Breed
column are indicated by a series of different symbols, including *****, -, and ???. We can also
tell that there were missing values in the Age column, since, by default, the median() function
in R returns a value of NA when any values are missing.

11

PSTAT 100, Summer Session A 2025 Lab01 SOLUTIONS ©Ethan P. Marzban

We will talk more about missing values later in this course. For now, let’s address the missingness in
the Age column:

Question 7

Re-do the computation from Question 5 above (i.e. computing the median age of each breed
of cat), but now exclude any missing Age values from the computation. Assign this to a new
variable called median_ages_no_na. Hint: Look up the help file for the median() function; is
there an argument that might help us here?

Solution:

median_ages_no_na <- cats %>%
group_by(Breed) %>%
summarise(Median_Age = median(Age, na.rm = T)) %>%
rename(Breed_Name = Breed)

Here are the first few rows:

head(median_ages_no_na, 10)

A tibble: 10 x 2
Breed_Name Median_Age
<chr> <dbl>

1 ***** 0.153
2 - 2.26
3 ??? 0.233
4 Abbysian 8.14
5 Abysinnian Cross 17.7
6 Abyssinian 6.83
7 Abyssinian X 4.89
8 Abyssinian X Bengal 10.2
9 Abyssinian x Siamese 3.79
10 Abyssinian/Tabby 5.18

Answer Check:

DO NOT EDIT THIS LINE
invisible({check("tests/q7.R")})

All tests passed!

The missingness in the Breed column is a little more difficult to handle, so we’ll save that endeavor
for a later time in the course.

12

PSTAT 100, Summer Session A 2025 Lab01 SOLUTIONS ©Ethan P. Marzban

Question 8

Does it appear that, on average, epilepsy is more common among older cats than younger cats?
Hint: Think about how you can create a numerical summary of the dataset (using tidyverse
functions) to help answer this question. Make sure you provide some sort of justification for
your answer! Later in the course, we will work on providing more formal justification for our
claims.

Solution:
Here’s the general idea: let’s compute the median age among epileptic cats and non-epileptic
cats, and compare these values:

cats %>%
group_by(Epilepsy) %>%
summarise(Median_Age = median(Age, na.rm = T))

A tibble: 3 x 2
Epilepsy Median_Age
<chr> <dbl>

1 Case 7.67
2 Non-case 4.43
3 <NA> 11.2

Though there appear to be some cats whose epilepsy condition were not recorded, it does
appear that the median age among epileptic cats is much higher than the median age among
non-epileptic cats. Hence, it does appear (upon first glance) that epilepsy is more common
among older cats.

Of course, to make this statement more rigorous (and to give it some more statistical justifcation),
we need more sophisticated tools - we will discuss these tools later in the course.

Submission Details

Congrats on finishing the first PSTAT 100 lab! Please carry out the following steps:

Submission Details

1) Check that all of your tables, plots, and code outputs are rendering correctly in your final
.pdf.

2) Check that you passed all of the test cases (on questions that have autograders). You’ll
know that you passed all tests for a particular problem when you get the message “All tests
passed!”.

3) Submit ONLY your .pdf to Gradescope. Make sure to match pages to your questions -

13

PSTAT 100, Summer Session A 2025 Lab01 SOLUTIONS ©Ethan P. Marzban

we’ll be lenient on the first few labs, but after a while failure to match pages will result in
point penalties.

14

	Required Packages
	Logistical Details
	Lab Overview and Objectives
	Part I: Reading In Data
	Filetypes and File Extensions
	Reading In Data
	Cats Dataset

	Part II: Transforming and Grouping Dataframes
	Filtering and Rearranging Rows
	The Pipe Operator
	Column-wide Operations
	Grouping a Dataframe

	Submission Details

