
HOMEWORK 2 - SOLUTIONS
PSTAT 100 - DATA SCIENCE: CONCEPTS AND ANALYSIS

INSTRUCTOR: Ethan P. Marzban

Submission Instructions

This homework assignment consists of a mix of written and coding questions.

Written Portion
• Please show all of your work
• Answers may be handwritten or typeset (using LaTeX, Word, etc.)
• Please write legibly; if the grader cannot read your work, you will not receive full
marks.

Coding Portion
• Please make sure to interpret all code outputs.

– As a general rule-of-thumb: if there is a code chunk whose output is not
being interpreted, you should move the code chunk to an Appendix.

Final Submission
• You should combine your written and coding answers into a single PDF, which you
upload to Gradescope.

– Here is a free online resource to help you merge PDFs.
– Please note: Gradescope will only allow you to upload a single PDF.

• Ensure youmatch pages in your Gradescope submission; failure to do somay incur
point penalties.

Due Date

You must upload your homework to Gradescope by no later than 11:59 pm on Sunday,
July 20, 2025.

Information on Grading

• A handful of parts will be selected from this homework to be graded on correct-
ness; these parts will be graded collectively out of 12 points.

– Wewill not reveal which parts are to be graded upon correctness until after
the homework is graded, so please attempt all problems!

• You will be assigned 2 additional points for submitting the entirety of your home-
work, and 1 additional point for matching pages on your gradescope submission.

– As such, if you fail to submit an attempt for all parts and fail to match pages,
you will not receive anything above an 80%.
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Written Portion

Problem 1: Simple Random Sampling Without Replacement

Motivation

In this problem, we develop a slightly more mathematical framework of simple random
sampling without replacement. I encourage you to use this problem as:

• A review of some requisite PSTAT 120A (probability) knowledge
• Practice with manipulating sums and double sums

LetS := {ξ1, · · · , ξm} be a set consisting ofm distinct elements, and let X⃗ := (X1, · · · , Xn)
denote a random sample taken from S without replacement such that all subsets of size n,
taken from S, are equally likely. Assume n, our sample size, is no larger than m, the number
of elements in S.

If we viewS as a population, this frameworkmodels X⃗ as a simple random sample, without
replacement taken from the population.

Define the population mean µ and population variance σ as

µ := 1
m

m∑
i=1

ξi; σ2 := 1
m

m∑
i=1

(ξi − µ)2

It may be useful to also define the popualtion total T to be the sum of all elements in S; that
is, T :=

∑m
i=1 ξi

(a) Show that
∑n

i=1 ξ2
i = m(σ2 + µ2). Hint: Consider starting with the definition of σ2,

expanding the square, and then simplifying terms.

Solution:

σ2 := 1
m

m∑
i=1

(ξi − µ)2

= 1
m

m∑
i=1

(ξ2
i − 2ξiµ + µ2)

= 1
m

[
m∑

i=1
ξ2

i − 2µ
m∑

i=1
ξi + µ2

m∑
i=1

(1)
]

= 1
m

[
m∑

i=1
ξ2

i − 2µ(mµ) + mµ2
]

= 1
m

[
m∑

i=1
ξ2

i − mµ2
]

= 1
m

m∑
i=1

ξ2
i − mµ2

So, in other words, we have shown that

σ2 = 1
m

m∑
i=1

ξ2
i − mµ2
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which, when rearranged, yields the desired result.

(b) Find pXi(ξk), the marginal PMF (probability mass function) of Xi. Use this to show that
Xi is an unbiased estimator for µ.

Solution: Since we are told to assume each subset of size n from S is equally likely,
we know that we are using the equally-likely probabilitymeasure. This in turn implies
that Xi ∼ DiscUnif(S), meaning

pXi(ξk) = 1
m

, ∀ξk ∈ S

This allows us to conclude

E[Xi] :=
m∑

k=1
ξkpXi(ξk) =

m∑
k=1

ξi · 1
m

= 1
m

m∑
k=1

ξk = µ

(c) Find pXi,Xj (ξk, ξℓ), the joint PMF of (Xi, Xj) where i ̸= j. Be sure to account for the
cases k = ℓ and k ̸= ℓ separately. Hint: Consider first calculating the conditional proba-
bilityP(Xj = ξℓ | Xi = ξk).

Solution: Let’s follow the hint, and first consider calculatingP(Xj = ξℓ | Xi = ξk).
First note that ifk = ℓ this probability is zero: ifXi = ξk andweare samplingwithout
replacement, it is impossible forXj to then equal ξℓ. If k ̸= ℓ, then after assigning ξk

toXi there are a total of (m − 1) elements in S remaining, each of which are equally
likely to be assigned to Xj . Hence,P(Xj = ξℓ | Xi = ξk) = 1/(m − 1) in this case,
and so

P(Xj = ξℓ | Xi = ξk) =
{

1/(m − 1) if k ̸= ℓ

0 if k = ℓ

Finally, we use the multiplication rule:

P(Xi = ξk, Xj = ξℓ) = P(Xj = ξℓ | Xi = ξk) · P(Xi = ξk)

which, using our result of part (b) above, means the joint PMF of (Xi, Xj) is given by

pXi,Xj (ξk, ξℓ) =


1

m(m−1) if k ̸= ℓ

0 if k = ℓ
=
( 1

m(m − 1)

)
1{k ̸=ℓ}

For parts (d) - (f): Since our sample was takenwithout replacement, the Xi’s will not be inde-
pendent. The question we will work toward answering over the next few parts is: what is the
covariance between any two observations, Xi and Xj?

(d) Use the result of part (c) to show that

E[XiXj ] = 1
m(m − 1)

[
T 2 −

m∑
k=1

ξ2
k

]
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Hint: If you encounter a double sum over indices k and ℓ such that k ̸= ℓ, note that you
can express this double sum as: a double sum over all (k, ℓ) minus a double sum over
which k = ℓ.

Solution: A formula from PSTAT 120A that we should remember is

E[g(Xi, Xj)] =
∑

k

∑
ℓ

g(ξk, ξℓ)pXi,Xj (ξk, ξℓ)

Hence, taking g(Xi, Xj) = XiXj , we have

E[XiXj ] =
m∑

k=1

m∑
ℓ=1

ξkξℓpXi,Xj (ξk, ξℓ)

=
m∑

k=1

m∑
ℓ=1

ξkξℓ

( 1
m(m − 1)

)
1{k ̸=ℓ}

= 1
m(m − 1)

∑
k ̸=ℓ

ξkξℓ

where
∑

k ̸=ℓ is a shorthand for a double sum over k and ℓ where k ̸= ℓ. At this point,
let’s follow the hint: we can express this double sum as the difference between a
double sum over all k and ℓ minus a double sum where k = ℓ:

E[XiXj ] = 1
m(m − 1)

∑
k ̸=ℓ

ξkξℓ

= 1
m(m − 1)

[
m∑

k=1

m∑
ℓ=1

ξkξℓ −
∑
k=ℓ

ξkξℓ

]

= 1
m(m − 1)

[(
m∑

k=1
ξk

)(
m∑

ℓ=1
ξℓ

)
−

m∑
k=1

ξ2
k

]

= 1
m(m − 1)

[
T 2 −

m∑
k=1

ξ2
k

]

(e) Show that
1

m(m − 1)

[
T 2 −

m∑
k=1

ξ2
k

]
= − σ2

m − 1
+ µ2

Solution: We now apply the result of part (a):

E[XiXj ] = 1
m(m − 1)

[
T 2 −

m∑
k=1

ξ2
k

]

= 1
m(m − 1)

[
T 2 − m(σ2 + µ2)

]
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Now, note that T :=
∑m

i=1 ξi = m[(1/m)
∑m

i=1 ξi] = mµ. Hence:

E[XiXj ] = 1
m(m − 1)

[
T 2 − m(σ2 + µ2)

]
= 1

m(m − 1)

(
m2µ2 − mσ2 − mµ2

)
= 1

m(m − 1)

[
(m2 − m)µ2 − mσ2

]
= − σ2

m − 1
+ µ2

(f) Combine the results of previous parts to conclude that

Cov(Xi, Xj) = − σ2

m − 1

Is it true that as the population size grows, the correlation betweenXi andXj necessarily
drops to zero? Hint: does σ2 depend on m?

As an Aside: this question is a preview of the kinds of questions asked in the branch of
Statistics known as asymptotics, which is primarily concerned with the long-term behav-
ior of statistical quantities.

Solution:

Cov(Xi, Xj) = E[XiXj ] − E[Xi]E[Xi] = − σ2

m − 1
+ µ2 − (µ)(µ) = − σ2

m − 1

Now, it is tempting to say: as m → ∞, the above expression goes to zero. However,
we need to be a bit careful: this would be true if σ2 were independent ofm, however
σ2 does implicitly depend on m.

Think of it this way: suppose S = {1, 2, 3}, and consider letting m → ∞. Let-
ting m → ∞ amounts to adding additional elements to S. If we add the elements
{102, 104, 106, · · · }, we see that σ2 will most certainly increase with m.

So, in order for Cov(Xi, Xj) to tend to zero as m → ∞, we need σ2 to grow at a
rate slower than m. (In words, this is saying we need to ensure that as we add more
elements to S, we are doing so in such a way that the population variance doesn’t
blow up too quickly.) Mathematically, you might see this expressed as: m → ∞
while σ2/m → 0.
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Coding Portion

Problem 1: Industrial Wastewater Discharge

Goals

This problem will touch on the following topics:
• Exploratory Data Analysis (EDA)
• Conducting hypothesis tests (including ANOVA)
• Regression

I encourage you to think of this as amini-project, with some additional guidance beyond
that which would be provided on the final project for this course.

Important

All plotsmust be generated using ggplot; plots generated in Base Rwill not receive full
marks.

In this problem, we’ll continue our example of Industrial Wastewater Discharge (IWD) from
Lecture 12. As a reminder: “Industrial wastewater discharge” refers to liquid waste produced
as a result of industrial processes. Companies are often required to register for permits to
produce industrial wastewater, and these permits are sometimes contingent on the average
concentration of pollutants in the wastewater.

We’ll consider the IWD from a fictitious company, called Company X, located in the fictitious
country of Gauchonia. Suppose that the state of Gauchonia only offers permits to companies
whose wastewater has an average pollutant concentration of 140 mg/L or less; to ensure reg-
ular compliance, government officials take annual audits of Company X ’s IWD.

Audits of Company X ’s IWD are conducted by taking water samples from a nearby river and
recordingpollutant levels (inmg/L). Becausepollutant levelsmaydiffer across locations in this
river (due to environmental factors), auditors take multiple water samples from 6 different
locations in the river, marked A through F. Note that the number of samples taken from each
location in a given audit are not the same; different locations may have different numbers of
associated water samples. (In statistical terms, we call this an unbalanced design.)

The dataset iwd.csv, located in the data subfolder, contains the results of these audits dat-
ing back for the past 15 years. Specifically, it contains the following variables:

• Year: year of audit; ranges from 2010 to 2025.
• Month: month of audit.
• Day: day of audit
• Location: location marker, indicating the location of the sample; one of A, B, C, D, E, or
F

• Sample_No: unique identifier for the sample
• Pollutants: concentration of pollutants in the given sample, measured in mg/L.

The first few rows of the iwd dataframe are displayed below:

Location Year Readings

A 2010 137.8
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Location Year Readings

A 2010 136.9
A 2010 140
A 2010 137.3

Part I: Exploratory Data Analysis

a) Generate a lineplot that tracks the number of observations taken at each location over
time. Color your plot based on location, and select an appropriate color palette. De-
scribe any patterns/trends you see, and provide a verbal explanation for why you think
these trends may exist.

SOLUTIONS:

iwd %>% group_by(Location, Year) %>%
summarise(n_obs = n()) %>%
ggplot(aes(x = Year, y = n_obs)) +
geom_point(aes(col = Location)) +
geom_line(aes(col = Location,

group = Location)) +
ylab("num. obs") +
theme_minimal(base_size = 12) +
ggtitle("Num. Obs. over Time")

`summarise()` has grouped output by 'Location'. You can override using the
`.groups` argument.
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The number of observations appears to have stayed relatively constant over time, with a
noticable dip in 2020. This dip is likely due to the COVID-19 pandemic.

b) Generate an appropriate plot (it’s up to you to figure out which one!) that displays
the distribution of pollutant measurements at each location; include only observations
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from the year 2024. Based on this plot alone, do you think there are significant differ-
ences between the average IWD concentration at the different locations?

SOLUTIONS:

iwd %>% filter(Year == 2024) %>%
ggplot(aes(x = Location, y = Readings)) +
geom_boxplot() +
theme_minimal(base_size = 12) +
ggtitle("IWD Concentrations by Location",

subtitle = "In 2024")
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In 2024, there does appear to be some difference in the pollutant concentrations across
locations. Specifically, locations E and F appear to have lower average IWD concentra-
tions, and Location A appears to have the highest average IWD concentration.

c) Generate a lineplot that tracks the average (based on the plot from part (b), it’s up to
you to decide whether the mean or the median is better) pollutant concentration at
each location, over time. Color your plot based on location, and select an appropriate
color panel. Describe any patterns/trends you see, and provide a verbal explanation for
why you think these trends may exist.

SOLUTIONS:

iwd %>%
group_by(Year, Location) %>%
summarise(`Avg. IWD` = median(Readings)) %>%
ggplot(aes(x = Year, y = `Avg. IWD`)) +
geom_point(aes(colour = Location, shape = Location)) +
geom_line(aes(colour = Location, linetype = Location)) +
theme_minimal(base_size = 12) +
ggtitle("Median IWD Concentration Over Time",
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subtitle = "Grouped by Location")

`summarise()` has grouped output by 'Year'. You can override using the
`.groups` argument.
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Overall, there doesn’t appear to be a trend in median pollutant readings over time. Loca-
tions A and E, howver, do appear to have experienced a steady increase in average IWD
over time.

Part II: Statistical Tests

In this part, we imagine that the Gauchonian government is considering whether to renew
Company X ’s permits for 2026, based on their IWD in 2025.

d) For each location, test the null that the mean pollutant concentration falls below 140
mg/L against the upper-tailed alternative that the mean concentration exceeds 140
mg/L. Use an overall 5% level of significance, but be sure to also implement appro-
priate safeguards to control for multiple hypothesis testing. Report the conclusions
of these six tests, and use this to determine whether you believe Company X ’s IWD per-
mits should be revoked in 2026 or not.

SOLUTIONS:

data_25 <- iwd %>% filter(Year == 2025)

filter_and_test <- Vectorize(function(loc) {
loc_spec <- data_25 %>% filter(Location == loc) %>% pull(Readings)
test_stat <- (mean(loc_spec) - 140) / (sd(loc_spec) / sqrt(length(loc_spec)))
p_val <- 1 - pt(test_stat, df = length(loc_spec) - 1)
return(p_val)

})
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data.frame(`p val` = filter_and_test(LETTERS[1:6]) %>% round(6),
check.names = FALSE

) %>% t() %>% pander()

A B C D E F

p val 0.000121 0.9991 0.9169 0.3763 1 1

To safeguard agasint multiple testing, we can simply divide our overall significance level
by 6 (the number of tests we are conducting), and compare each of the above p-values to
0.0083. We see that at all locations except for Location A, we can safely fail to reject the
null in favor of the alternative. As such, there was insufficient evidence to suggest that
Company X’s IWD falls below the threshhold, indicating that their license should not be
revoked.

e) Let’s suppose we want to statistically test whether we believe the mean pollutant con-
centrations in 2025 were the same across locations. Conduct an ANOVA to test this;
use an overall 5% level of significance, but again implement corrections for multiple
testing. Then, run a Kruskal-Wallis test and compare your results to that obtained by
the ANOVA.

Information

The Kruskal-Wallis (KW) test is an example of what is known as a nonparametric test.
Specifically, recall that one of the assumptions of ANOVA is that observations within
each group are normally distributed. The KW test tests the same null and alternative
hypotheses as the ANOVA, but does not make any distributional assumptions on the
observations. Such “distribution-free” tests are called nonparametric.

SOLUTIONS:

aov(Readings ~ Location, data_25) %>% summary()

Df Sum Sq Mean Sq F value Pr(>F)
Location 5 4119 823.7 24.07 <2e-16 ***
Residuals 167 5716 34.2
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To safeguard agasint multiple testing, we should again divide our significance level by
6. Regardless, we see that the associated p-value in ANOVA is practically zero, meaning
there is statistical evidence to suggest the average concentrations is not the same across
locations.

kruskal.test(Readings ~ Location, data_25)
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Kruskal-Wallis rank sum test

data: Readings by Location
Kruskal-Wallis chi-squared = 72.576, df = 5, p-value = 2.979e-14

Even the Kruskal-Wallis test agrees.
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