
Lab 04: Hypothesis Testing SOLUTIONS
PSTAT 100: Spring 2024 (Instructor: Ethan P. Marzban)

MEMBER 1 (NetID 1) MEMBER 2 (NetID 2)
MEMBER 3 (NetID 3)

May 4, 2024

Required Packages

library(ottr) # for checking test cases (i.e. autograding)
library(pander) # for nicer-looking formatting of dataframe outputs
library(tidyverse) # for graphs, data wrangling, etc.
library(gridExtra) # for multipanel graphs

Logistical Details

Logistical Details

• This lab is due by 11:59pm on Wednesday, May 8, 2024.

• Collaboration is allowed, and encouraged!

– If you work in groups, list ALL of your group members’ names and NetIDs (not Perm
Numbers) in the appropriate spaces in the YAML header above.

– Please delete any “MEMBER X” lines in the YAML header that are not needed.
– No more than 3 people in a group, please.

• Ensure your Lab properly renders to a .pdf; non-.pdf submissions will not be graded and
will receive a score of 0.

• Ensure all test cases pass (test cases that have passed will display a message stating "All
tests passed!")

Lab Overview and Objectives

In this lab, we will discuss:
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• One-sample tests for the mean
• Two-sample t-tests
• ANOVA (Analysis of Variance)

Recap: Hypothesis Testing

Recall that in hypothesis testing, we use data to assess claims made about a given population
parameter. For example, given a population mean 𝜇, our null hypothesis may take the form

𝐻0 ∶ 𝜇 = 𝜇0

for some specified value of 𝜇0 ∈ ℝ, and our alternative hypothesis would take one of the following
four forms:

• 𝐻𝐴 ∶ 𝜇 < 𝜇0 (lower-tailed)
• 𝐻𝐴 ∶ 𝜇 > 𝜇0 (upper-tailed)
• 𝐻𝐴 ∶ 𝜇 ≠ 𝜇0 (two-sided)
• 𝐻𝐴 ∶ 𝜇 = 𝜇𝐴, 𝜇𝐴 ≠ 𝜇0 (simple-vs-simple)

We saw in lecture that a two-sided test for the mean when the population standard deviation 𝜎 is
unknown takes the form

Reject 𝐻0 when ∣𝑋𝑛 − 𝜇0
𝑆𝑛/√𝑛 ∣ > 𝐹 −1

𝑡𝑛−1
(1 − 𝛼

2 )

where |(𝑋𝑛 − 𝜇0)/(𝑆𝑛/√𝑛)| is called our test statistic, 𝐹 −1
𝑡𝑛−1

(⋅) denotes the quantile (i.e. inverse-cdf)
function of the 𝑡𝑛−1 distribution, and 𝛼 is our significance level (set before the start of our analyses).

Question 1

What value is at the 87.5th percentile of the 𝑡42 (i.e. 𝑡−distribution with 48 degrees of freedom)?
Assign your answer to a variable called t_quant_1. Hint: qt().

Solution:

## replace this line with your code

t_quant_1 <- qt(0.875, 48)

Answer Check:

# DO NOT EDIT THIS LINE
invisible({check("tests/q1.R")})

All tests passed!

Additionally, recall that hypothesis tests can be reformulated to be in terms of p-values (as opposed
to critical values, as in the formulation above). We define a p-value to be the probability of, under
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the null, observing something as or more extreme (in the direction of the alternative) as what was
observed. Rather than trying to memorize formulas for p-values, I recommend drawing a picture.
For instance, if we observe a test statistic value of −1, here are the diagrams corresponding to the
lower-tailed, upper-tailed, and two-sided p-values:
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Question 2

Consider a sample of size 𝑛 = 87 taken from a population with unknown mean 𝜇 and unknown
standard deviation 𝜎. The sample mean of these 87 values is 3.9 and the sample standard
deviation is 1.46. Suppose we wish to test the hypotheses:

[ 𝐻0 ∶ 𝜇 = 3.5
𝐻𝐴 ∶ 𝜇 < 3.5

Compute the p-value of the observed value of the test statistic; assign this value to a variable
called p_val_1. Hint: pt().

Solution:

## replace this line with your code

p_val_1 <- pt((3.9 - 3.5) / (1.46 / sqrt(87)), 86)

Answer Check:

# DO NOT EDIT THIS LINE
invisible({check("tests/q2.R")})

All tests passed!

Testing Across Two Groups

In certain cases, it may be desired to test whether or not two populations have the same mean. For
example, we might ask ourselves: is the true average (mean) commute time of all Los Angelites the
same as the true average (mean) commute time of New Yorkers?
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More mathematically, consider two populations 𝒫1 (with mean 𝜇1 and standard deviation 𝜎1) and 𝒫2
(with mean 𝜇2 and standard deviation 𝜎2). The null hypothesis we wish to test can be formulated
as

𝐻0 ∶ 𝜇1 = 𝜇2

and some possible alternatives are:

• 𝐻𝐴 ∶ 𝜇1 < 𝜇2 (lower-tailed)
• 𝐻𝐴 ∶ 𝜇1 > 𝜇2 (upper-tailed)
• 𝐻𝐴 ∶ 𝜇1 ≠ 𝜇2 (two-sided)

It’s customary to reparametrize the null and alternative hypotheses to be in terms of parameter
differences:

𝐻0 ∶ 𝜇1 − 𝜇2 = 0
and

• 𝐻𝐴 ∶ 𝜇1 − 𝜇2 < 0 (lower-tailed)
• 𝐻𝐴 ∶ 𝜇1 − 𝜇2 > 0 (upper-tailed)
• 𝐻𝐴 ∶ 𝜇1 − 𝜇2 < 0 (two-sided)

The reason we do so is, if we view 𝛿 ∶= 𝜇1 − 𝜇2 as its own parameter, our test can be rephrased as a
test solely on 𝛿 - that is, we can effectively treat the problem as a one-sample problem (which we are
now very familiar with).

Now, consider a sample 𝑋 ∼ 𝒫1 of size 𝑛1 and 𝑌 ∼ 𝒫2 of size 𝑛2 (note that we are allowing our
two samples to be of different sizes!). An unbiased estimator for 𝛿 is Δ ∶= 𝑋𝑛1

− 𝑌 𝑛2
, and hence it

makes sense to formulate a test statistic to be in terms of this difference. Note that, if we assume
independence both within our samples and across our samples,

Var(Δ) ∶= Var (𝑋𝑛1
− 𝑌 𝑛2

)

= Var (𝑋𝑛1
) + Var (𝑌 𝑛2

) = 𝜎2
1

𝑛1
+ 𝜎2

2
𝑛2

Hence, a natural test statistic (assuming unknown population standard deviations) is

TS ∶= 𝑋𝑛1
− 𝑌 𝑛2

√𝑆2
𝑋

𝑛1
+ 𝑆2

𝑌
𝑛1

(1)

where 𝑆2
𝑋 and 𝑆2

𝑌 denote the sample variances of our samples 𝑋 and 𝑌 , repsectively. It turns out that
the exact distribution of TS is unknown, but very well-approximated by a 𝑡−distribution with degrees
of freedom given by the Satterthwaite Approximation:

df = round

⎧{{
⎨{{⎩

[(𝑠2
𝑋

𝑛1
) + (𝑠2

𝑌
𝑛2

)]
2

( 𝑠2
𝑋

𝑛1 )
2

𝑛1−1 +
( 𝑠2

𝑌
𝑛2 )

2

𝑛2−1

⎫}}
⎬}}⎭

where 𝑠2
𝑋 and 𝑠2

𝑌 denote the observed instances of 𝑆2
𝑋 and 𝑆2

𝑌 , respectively, and round(⋅) denotes the
rounding function [e.g. round(4.2) = 4]
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Question 3

Suppose we have a sample 𝑋 of size 𝑛1 = 50 from Population 1 and a sample 𝑌 of size
𝑛2 = 60 from Population 2. If 𝑠2

𝑋 = 4.3 and 𝑠2
𝑌 = 3.2, compute the degrees of freedom of the

t-distribution that the test statistic defined in Equation (1) follows. Store your answer in a
variable called df1.

Solution:

## replace this line with your code

sx2 <- 4.3
sy2 <- 3.2
n1 <- 50
n2 <- 60

numerator <- ((sx2 / n1) + (sy2 / n2))^2
denom <- ((sx2 / n1)^2 / (n1 - 1)) + ((sy2 / n2)^2 / (n2 - 1))

df1 <- round(numerator / denom)

Answer Check:

# DO NOT EDIT THIS LINE
invisible({check("tests/q3.R")})

All tests passed!

Question 4

Refer to the situation in question 3 above, and assume that the mean of 𝑋 is 5.5 and the mean
of 𝑌 is 5.2. Compute a two-sided p-value (i.e. a p-value assuming a two-sided alternative) of the
observed test statistic. Store your answer in a variable called pval2.

Solution:

## replace this line with your code

test_stat <- (5.5 - 5.2) / sqrt((sx2 / n1) + (sy2 / n2))

pval2 <- 2*pt(abs(test_stat), df = df1, lower.tail = F)

Answer Check:
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# DO NOT EDIT THIS LINE
invisible({check("tests/q4.R")})

All tests passed!

Now, there exists a function in R called t.test() which is most often used to conduct two-sample
t-tests (which is precisely the test we just developed above).

Question 5

Consider the following vectors x and y, and interpret them as two samples from two different
populations

x <- c(1, 2, 3, 4, 5)
y <- c(2, 2, 3, 3, 4, 5)

First conduct a two-sided t-test by hand (i.e. using only basic R functions and NOT using
t.test()). Then, reconduct your test using t.test(), and compare results.

Solution:

## replace this line with your code
xbar <- mean(x)
ybar <- mean(y)

sx2 <- var(x)
sy2 <- var(y)
n1 <- length(x)
n2 <- length(y)

ts <- (xbar - ybar) / sqrt((sx2 / n1) + (sy2 / n2))

numerator <- ((sx2 / n1) + (sy2 / n2))^2
denom <- ((sx2 / n1)^2 / (n1 - 1)) + ((sy2 / n2)^2 / (n2 - 1))

The observed value of the test statistic is -0.1953662, and the degrees of freedom are 7.2679146.
Compare this with the output of t.test():

t.test(x, y, alternative = "two.sided")

Welch Two Sample t-test

data: x and y
t = -0.19537, df = 7.2679, p-value = 0.8505
alternative hypothesis: true difference in means is not equal to 0

6



95 percent confidence interval:
-2.168948 1.835615
sample estimates:
mean of x mean of y
3.000000 3.166667

Answer Check:

There is no autograder for this question.

ANOVA

A natural question that arises is: how can we compare means across several (i.e. more than 3 groups).
For example, suppose we want to determine whether the average (mean) air pollution levels are the
same across three different cities.

More concretely, consider 𝑘 populations 𝒫1, ⋯ , 𝒫3 with means 𝜇1, ⋯ , 𝜇𝑘 and variances 𝜎2
1, ⋯ , 𝜎2

𝑘. Ad-
ditionally, consider testing

[ 𝐻0 ∶ 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑘
𝐻𝐴 ∶ At least one of the means are different

Such a set of hypotheses can be tested using what is known as an Analysis of Variance (or ANOVA,
for short). Here’s the main idea of how ANOVA works. Suppose we have samples (potentially of
different sizes) from each population. Even if all populations have the same means, we wouldn’t be
surprised in our samples had slightly different observed sample means. This is because there will be
some baseline variability due to chance. What ANOVA seeks to do is compare the variances within
and across samples and see whether or not the overall variability exceeds what we would expect due
to chance alone (which would lead credence away from the null, that the populations all have the
same mean).

In the interest of time, I’ll bypass the theoretical derivations of ANOVA and jump straight to how
we can perform an ANOVA in R. There are actually a couple of functions which can be used for
conducting an ANOVA - we’ll use the function aov() [and we’ll return to ANOVA in a couple of weeks].

One thing I want to make very clear is the fact that the alternative hypothesis in ANOVA is NOT
𝐻𝐴 ∶ 𝜇1 ≠ 𝜇2 ≠ ⋯ ≠ 𝜇𝑘. Rather, the alternative is simply that at least one of the group means
differs from the rest.

As a concrete example, consider the following (fictional) situation. Suppose we want to determine
whether or not the average scores of students on a particular exam differ significantly based on class
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standing (i.e. freshmen, sophomore, junior, senior). Additionally, suppose we collect the following
(fictional) data:

freshmen <- rnorm(50, 85, 3)
sophomores <- rnorm(60, 90, 5)
juniors <- rnorm(70, 90, 4)
seniors <- rnorm(40, 95, 5)

scores <- data.frame(
score = c(freshmen, sophomores, juniors, seniors),
standing = factor(

c(rep("F", length(freshmen)),
rep("So", length(sophomores)),
rep("J", length(juniors)),
rep("Se", length(seniors))
),

ordered = T,
levels = c("F", "So", "J", "Se")

)
)

As a first pass, we can generate a side-by-side boxplot:

scores %>%
ggplot(aes(y = standing,

x = score)) +
geom_boxplot(staplewidth = 0.25) +
theme_bw() +
ggtitle("Standing vs. Scores")
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Based on the boxplot alone, it looks like there are some clear differences in the scores across the
different class standings. To formally test this using an ANOVA, we use:

aov(score ~ standing, data = scores) %>% summary()

Df Sum Sq Mean Sq F value Pr(>F)
standing 3 2056 685.3 33.97 <2e-16 ***
Residuals 216 4357 20.2
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We’ll discuss the different components of the output in a few weeks (after we discuss regression). For
now, focus on the Pr(>F) column - this is (essentially) a p-value of the hypotheses posited at the
start of this section.

Question 6

One of the datasets built into R is called chickwts, and contains the weights of various chickens
placed on one of six different feed supplements.

a) Generate a side-by-side boxplot of the weight (in grams) vs. feed type. Based on the graph,
does there appear to be a difference in average (mean) weight across the different feed
types?

b) Conduct an ANOVA to test whether there is a statistically significant difference in average
chick weights across the different feed types.

Solution:

## replace this line with your code;
## feel free to add more code chunks as you see fit.
chickwts %>%
ggplot(aes(x = weight, y = feed)) +
geom_boxplot(staplewidth = 0.25) +
theme_minimal() +
ggtitle("Feed Type vs. Weight (g)")
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Based on this boxplot, it appears as though chick weights do differ across the different feed types.
To formally test this with an ANOVA, we use

aov(weight ~ feed, chickwts) %>% summary()

Df Sum Sq Mean Sq F value Pr(>F)
feed 5 231129 46226 15.37 5.94e-10 ***
Residuals 65 195556 3009
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sure enough, the p-value is 5.94e-10 (i.e. 5.94 × 10−10), which is much smaller than a 0.05 level
of significance meaning:

At a 5% level of significance, there is evidence to suggest that there exists a difference
in average (mean) chick weight across the different feed types.

Answer Check:

There is no autograder for this question.

Submission Details

1) Check that all of your tables, plots, and code outputs are rendering correctly in your final
.pdf.

2) Check that you passed all of the test cases (on questions that have autograders). You’ll
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know that you passed all tests for a particular problem when you get the message “All tests
passed!”.

3) Submit ONLY your .pdf to Gradescope. Make sure to match pages to your questions -
we’ll be lenient on the first few labs, but after a while failure to match pages will result in
point penalties.
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