
Lab 01: Boba Time! SOLUTIONS
PSTAT 100: Spring 2024 (Instructor: Ethan P. Marzban)

MEMBER 1 (NetID 1) MEMBER 2 (NetID 2)
MEMBER 3 (NetID 3)

April 7, 2024

Required Packages

library(ottr) # for checking test cases (i.e. autograding)
library(pander) # for nicer-looking formatting of dataframe outputs
library(reshape2) # for 'melting' data frames
library(tidyverse) # for graphs, data wrangling, etc.

Logistical Details

Logistical Details

• This lab is due by 11:59pm on Wednesday, April 12, 2024.

• Collaboration is allowed, and encouraged!

– If you work in groups, list ALL of your group members’ names and NetIDs (not Perm
Numbers) in the appropriate spaces in the YAML header above.

– Please delete any “MEMBER X” lines in the YAML header that are not needed.
– No more than 3 people in a group, please.

• Ensure your Lab properly renders to a .pdf; non-.pdf submissions will not be graded and
will receive a score of 0.

• Ensure all test cases pass (test cases that have passed will display a message stating "All
tests passed!")

Lab Overview and Objectives

Welcome to our first “official” PSTAT 100 Lab! In this lab, we will cover the following:
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• Reading in data of different filetypes

• Cursory introduction to databases

• An introduction to joining and merging dataframes

• Manipulating and Tidying data using the tidyverse package.

How do Labs Work?

Labs assignments are designed to be largely doable within the 50-minutes Lab Sessions on
Mondays. Having said that, we would much rather you work through the labs carefully and
completely without feeling the need to rush things, which is why the Labs are not due until
Wednesdays.

Typically, lab assignments will focus on the programming side of the course. This will often entail
extending concepts discussed in Lecture, and occasionally involve introducing some new concepts
as well. Please keep in mind that Lab material is potentially testable on the In-Class Assessments.

You are highly encouraged to ask your TA questions during Section and/or Office Hours!

Part I: Reading In Data

Filetypes and File Extensions

Recall that data is most often stored in tabular form. Tables, as we colloquially refer to them, however,
contain a lot of extraneous formatting information (e.g. border widths, cell padding, etc.), that don’t
actually provide all that much information when it comes to computation and/or analysis. As such,
when storing data in a file, we often strip down the data to its most basic forms.

We really only need to specify two things when structuring a table: how rows are separated, and how
cells within each row are separated. In most files, new rows of a table are separated by a new row in
the raw data file. There is, however, a fair amount of flexibility in how the separation of cells in a
dataset are indicated.

Indeed, how cells (i.e .values) are separated in a given file is what is referred to as the filetype. Two
popular filetypes are:

• Comma-Separated Values (CSV): values are separated by commas

• Tab-Separated Values (TSV): values are separated by tabs

When saving our file, we use the file extension to indicate the filetype: for instance, a file called
my_data.csv will be stored as a CSV file, whereas a file called my_data.tsv will be stored as a TSV
file.
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Reading In Data

Storing data in raw files is all well and good, but most often we’d like to read the data contained in a
file into R! There are actually several functions we can use in R to read in files. The most general one
is the read.table() function.

Question 1

Look up the help file for read.table() (consult the optional Lab 0 if you need help figuring our
how to do this!). Explain, in words, how you specify the filetype of a file when reading it into
R using read.table() (i.e. what argument controls the filetype? what sorts of values can this
argument take?)

Solution:
Replace this line with your answer

The ’sep’ argument is what controls the filetype For instance, to read in a csv file,
we would pass in a value of ’,’ to ’sep’; i.e. read.table(..., sep = ’,’)

There is no autograder for this question; your TA will manually check that your answers are
correct.

Because CSV files are so common, there is actually a separate function in R called read.csv(), used
to read in CSV files. (We encourage you to look up the help file for this function as well!)

Note that both the read.table() and read.csv() functions have a file argument. From the help
file, we can see that the file argument is:

“the name of the file which the data are to be read from. Each row of the table appears as
one line of the file. If it does not contain an absolute path, the file name is relative to the
current working directory, getwd().

What this means is that running read.csv("my_data.csv") will attempt to read in a file called
my_data.csv that is located in your current working directory. If no such file exists, R will return an
error.

The reason I highlight this is because it is common to include all relavant data files in a subfolder of
your working directory. That is, it is common to have a working directory file structure like:

+--- Main Folder
¦--- analysis.R
|--- data

|--- my_file.csv

In this case, if you are in the analysis.R file and your working directory is the Main Folder, then to
read in the my_file.csv file you should use read.csv("data/my_file.csv").
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Tip

To set the working directory in R, click on the Session dropdown menu at the top of RStudio,
navigate to the Set Working Directory submenu, and select the desired option.

Part II: Introduction to Databases

As you might imagine, a single file isn’t always enough to capture all of the data necessary for a
particular analysis. Sometimes, we need to consider a database: for the purposes of this class, we
can think of a database as simply being a collection of dataframes, all related in some way.

As a simple example, let’s don the persona of a financial analyst working for GauchoBubble, a new
up-and-coming boba shop. We are particularly interested in examining the revenue generated by
sales on a particular day at GauchoBubble. Available to us is a database called GauchoBubble, which
contains two files (each containing a single dataframe): orders.csv (which contains information on
the actual orders placed), and inventory.csv (which contains information on the products sold at
GauchoBubble).

The variables in the orders.csv dataframe are:

• order_no: an identifier for each order placed (orders containing multiple items are split across
multiple rows, with only one order in each row)

• item_no: a unique identifier of each item sold at GauchoBubble

The variables in inventory.csv are:

• ITEM_NO: a unique identifier of each item sold at GauchoBubble

• DESCRIP: a verbal description of each item sold at GauchoBubble

• PPU: the price-per-unit of each item sold at GauchoBubble

Here are the first few rows of both the orders and inventory dataframes:

ORDERS:

order_no item_no

1 T02
2 T02
2 B01
2 T01
2 J01
3 B02

INVENTORY:

ITEM_NO DESCRIP PPU

T00 Taro; No Topping 5.25
T01 Taro; Boba 5.75
T02 Taro; Lychee 5.75
T03 Taro; Egg Pudding 5.75
J00 Jasmine Milk; No Topping 6.25
J01 Jasmine Milk; Boba 6.75
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Question 2

Read in the orders.csv file and store it in a variable called orders. Then, read in the
inventory.csv file and store it in a variable called inventory.

Solution:

## replace this line with your code
orders <- read.csv("data/orders.csv")
inventory <- read.csv("data/inventory.csv")

Answer Check:

# DO NOT EDIT THIS LINE
invisible({check("tests/q2.R")})

All tests passed!

Database Terminology

Databases have a rich and complex theory. Much of the modern-day theory surrounding databases is at-
tributed to Edgar F. Codd, a scientist who developed a framework surrounding relational databases
while working at IBM, in the 60’s and 70’s. As this is not meant to be a class in database management,
we’ll only scratch the surface of databases - If you’re curious to read more, much of Codd’s work is
summarized in his book titled “The Relational Model for Database Management”.

Here is the gist of things. Again, we can think of a database as being a collection of relations
(i.e. dataframes/tables), typically related in some fashion. Each relation in a database has a unique
primary key, which is the smallest set of variables needed to uniquely determine the rows of the
relation For example, the primary key of the INVENTORY relation is {ITEM_NO}, as each item number
corresponds to a unique row in the INVENTORY relation.

However, the same cannot be said about the ORDERS relation. For example, if I tell you “show me
the row of the ORDERS relation that has item_no T02”, you won’t be able to do so because there
are multiple rows with item_no value equal to T02. As such, we actually need both order_no and
item_no to uniquely identify the rows of the ORDERS relation, and we set the primary key to be the
set {order_no, item_no} (primary keys consisting of more than one variable are sometimes referred
to as compound keys).

A foreign key is a key (or set of keys) in one relation that corresponds to the primary key of a another
relation. Note that it is allowed for foreign keys to point to only one of the keys in a compound primary
key. For example, note that the ITEM_NO column from the INVENTORY table corresponds to the item_no
column in the ORDERS table: hence, we would say that the INVENTORY:ITEM_NO key (note the syntax
table_name:column_name) is a foreign key that points to ORDERS:item_no.
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Joins

When working with databases, it is sometimes necessary/desired to combine one or more dataframes
in some way. For example, take the ORDERS dataframe: it currently only includes the unique identifier
of each product, and not the actual name of the product. Wouldn’t it be nice to include the product
names with each of the orders?

I think most of us can do this combination manually fairly easily:

order_no item_no DESCRIP

1 T02 Taro; Lychee
2 T02 Taro; Lychee
2 B01 Original Milk; Boba
2 T01 Taro; Boba
2 J01 Jasmine Milk; Boba
3 B02 Original Milk

But, how can we make R do this for us? To answer this question, let’s break down how we did this
combination manually. For example, focusing on the first row:

• We first used the ORDERS dataframe to look up the item_no of the first order.

• We then found that item_no in the INVENTORY dataframe.

• Finally, we looked up the DESCRIP of the corresponding item_no, and added this into the third
column of our ORDERS dataframe.

This is an example of what is known as a join (also known as a merge), in which we combine
information from multiple tables. The key idea is that we join on/along a foreign key relationship!

There are two main classes of joins: mutating joins and filtering joins. For now, let’s restrict our
considerations to mutating joins. As an illustrative example, we’ll consider the following two simple
tables:

x

ind_x var_x

one a
two b
two c

three c
four d

y

ind_y var1_y var2_y

a cat piano
b dog piano
c rabbit violin
e snake viola

We can code these tables into R as dataframes:

x <- data.frame(
ind_x = c("one", "two", "two", "three", "four"),
var_x = c("a", "b", "c", "c", "d")

)
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y <- data.frame(
ind_y = c("a", "b", "c", "e"),
var1_y = c("cat", "dog", "rabbit", "snake"),
var2y = c("piano", "piano", "violin", "viola")

)

Left join

Perhaps the most commonly-used join is that of a left join, which is used to add additional information
to a table. The syntax of a left join is:

left_join(
x,
y,
by = join_by(var_x == ind_y)

)

ind_x var_x var1_y var2y
1 one a cat piano
2 two b dog piano
3 two c rabbit violin
4 three c rabbit violin
5 four d <NA> <NA>

Note that, by default, left_join(x, y, ...) includes all rows of x, but not necessarily all rows of y.
This means that the output of left_join(x, y, ...) will (almost) always have the same number
of rows as x.

Caution

Left joins are not symmetric! That is: left_join(x, y) will not produce the same output as
left_join(y, x), as is indicated below:

left_join(
y,
x,
by = join_by(ind_y == var_x)

)

ind_y var1_y var2y ind_x
1 a cat piano one
2 b dog piano two
3 c rabbit violin two
4 c rabbit violin three
5 e snake viola <NA>
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Inner Joins, Right Joins, and Full Joins

There are three other kinds of mutating joins: inner joins, right joins, and full joins. All of these
are similar to left joins in that they are used to augment existing dataframes with information sourced
from another dataframe; the key difference is in which rows are kept post-join.

Right joins keep all rows in y:

right_join(
x,
y,
by = join_by(var_x == ind_y)

)

ind_x var_x var1_y var2y
1 one a cat piano
2 two b dog piano
3 two c rabbit violin
4 three c rabbit violin
5 <NA> e snake viola

Inner joins keep only rows present in both x and y:

inner_join(
x,
y,
by = join_by(var_x == ind_y)

)

ind_x var_x var1_y var2y
1 one a cat piano
2 two b dog piano
3 two c rabbit violin
4 three c rabbit violin

Full joins keep rows present in either x or y:

full_join(
x,
y,
by = join_by(var_x == ind_y)

)

ind_x var_x var1_y var2y
1 one a cat piano
2 two b dog piano
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3 two c rabbit violin
4 three c rabbit violin
5 four d <NA> <NA>
6 <NA> e snake viola

Let’s return to our GauchoBubble database. Suppose we want to join the OBJECT and INVENTORY
dataframes to include the order information as well as the item descriptions and price-per-units, to
obtain a new dataframe with columns order_no, item_no, DESCRIP, and PPU, in that order. In
other words, we want to create a table whose first few rows look like this:

order_no item_no DESCRIP PPU

1 T02 Taro; Lychee 5.75
2 T02 Taro; Lychee 5.75
2 B01 Original Milk; Boba 5.75
2 T01 Taro; Boba 5.75
2 J01 Jasmine Milk; Boba 6.75
3 B02 Original Milk 5.75

Question 3

A) Which type/s of joins could be used to accomplish this? (If the desired table could be
created using several choices of joins, be sure to list them all.)

Solution, part (A):
Replace this line with your answers

We could use a left join, full join, or inner join. Technically, we could use a right
join as well, but we would need to rearrange column orders if we did so.

B) Now, perform the join. (If you believe there are multiple potential joins we could use, pick
one; that is, you do not have to redo the join multiple times)

Solution, part (B) :

## replace this line with your code
orders_joined <- left_join(
orders,
inventory,
by = join_by(item_no == ITEM_NO)

)

Answer Check:

# DO NOT EDIT THIS LINE
invisible({check("tests/q3.R")})

All tests passed!
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Part III: Transforming and Grouping Dataframes

The majority of our considerations up until now have been pertaining to the structuring of dataframes.
Structure, as we know, is only half of the picture - we’d like to start analyzing our data!

R has many functions dedicated to the transformation, aggregation, and analysis of dataframes. Many
of these can be found in what is known as the tidyverse. The tidyverse is technically a collection of
several R packages: a full list of included packages can be found on the official tidyverse website. The
tidyverse is primarily used to clean, manipulate, and tidy datasets. In this section of the lab, we will
focus on the data transformation functionality of the tidyverse.

I always find examples to be illustrative! As such, here is a (mock) dataset, containing the final scores
of 10 students in a fictitious PSTAT course, for illustrative purposes:

pstat_grades <- data.frame(
student_id = 1:10,
major = c("PSTAT", "PSTAT", "PSTAT", "PSTAT", "PSTAT",

"Comm", "Comm", "Comm", "Econ", "Econ"),
final_grade = c(87.2, 89.2, 92.5, 97.7, 40.1, 85.7, 95.5, 77.1, 82.1, 99.1)

)

pstat_grades %>% pander()

student_id major final_grade
1 PSTAT 87.2
2 PSTAT 89.2
3 PSTAT 92.5
4 PSTAT 97.7
5 PSTAT 40.1
6 Comm 85.7
7 Comm 95.5
8 Comm 77.1
9 Econ 82.1
10 Econ 99.1

Filtering and Rearranging Rows

Suppose we want to filter out rows of a dataset that do not match some constraint. For instance,
say we only want to access the rows of the pstat_grades dataframe corresponding to students in the
PSTAT major. We can do so using the filter() function:

filter(pstat_grades,
major == "PSTAT")

student_id major final_grade
1 1 PSTAT 87.2
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2 2 PSTAT 89.2
3 3 PSTAT 92.5
4 4 PSTAT 97.7
5 5 PSTAT 40.1

We can perform more complex filtering by utilizing the logical connectors available to us in R (i.e. &
and |). For example, to display only the rows of PSTAT majors scoring above 90, we would run

filter(pstat_grades,
(major == "PSTAT") & (final_grade > 90))

student_id major final_grade
1 3 PSTAT 92.5
2 4 PSTAT 97.7

Note that the filter() function does not change the order of rows. If we wanted to change the order
of rows in a dataset, we can use the arrange() function. For instance, to rearrange the rows of the
pstat_grades dataset to be in descending order of final_grade, we would use

arrange(pstat_grades,
desc(final_grade))

student_id major final_grade
1 10 Econ 99.1
2 4 PSTAT 97.7
3 7 Comm 95.5
4 3 PSTAT 92.5
5 2 PSTAT 89.2
6 1 PSTAT 87.2
7 6 Comm 85.7
8 9 Econ 82.1
9 8 Comm 77.1
10 5 PSTAT 40.1

We can actually arrange based on non-numerical columns as well:

arrange(pstat_grades,
desc(major))

student_id major final_grade
1 1 PSTAT 87.2
2 2 PSTAT 89.2
3 3 PSTAT 92.5
4 4 PSTAT 97.7
5 5 PSTAT 40.1
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6 9 Econ 82.1
7 10 Econ 99.1
8 6 Comm 85.7
9 7 Comm 95.5
10 8 Comm 77.1

Can you tell what criterion R is using when it rearranges the columns based on a non-numerical
column?

Question 4

Let’s return to the orders_joined dataframe you created above, by merging the orders and
inventory dataframes. Filter the dataframe to only include rows corresponding to orders of
Original Milk Tea with Egg Pudding topping; additionally, sort the rows in descending order of
Order Number. Store this in a variable called og_milk_tea_ep, and display the first 4 rows of
the og_milk_tea_ep dataframe.

Solution:

## replace this line with your code
og_milk_tea_ep <- orders_joined %>%
filter(DESCRIP == "Original Milk; Egg Pudding") %>%
arrange(desc(order_no))

head(og_milk_tea_ep, 4)

order_no item_no DESCRIP PPU
1 68 B03 Original Milk; Egg Pudding 5.75
2 65 B03 Original Milk; Egg Pudding 5.75
3 58 B03 Original Milk; Egg Pudding 5.75
4 41 B03 Original Milk; Egg Pudding 5.75

Answer Check:

# DO NOT EDIT THIS LINE
invisible({check("tests/q4.R")})

All tests passed!

The Pipe Operator

Let’s take a quick interlude to discuss what is (arguably) one of the most important operators in R:
the pipe operator (%>%).

I like to think of the pipe operator as being akin to a composition of two functions (remember that
from Precalculus?) Recall that the composition of two functions 𝑓() and 𝑔() is notated

(𝑓 ∘ 𝑔)(𝑥) ∶= 𝑓(𝑔(𝑥))
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We can see that using the composition operator can help avoid the headache of multiple parentheses.

The pipe operator works much in the same way: it allows us to “unpack” expressions that would
otherwise involve series of nested inputs. Loosely speaking, the pipe operator squeezes (pipes) what
is on the left hand side to the first argument of whatever is on the RHS. For example:

c(1, 2, 3) %>% sum()

[1] 6

is completely equivalent to

sum(c(1, 2, 3))

[1] 6

We can get fancy, and use multiple pipe operators in succession:

pstat_grades %>%
filter(major %in% c("PSTAT", "Econ")) %>%
nrow()

[1] 7

We can see that the pipe operator has an additional advantage over just making our code more readable:
it also mimics the workflow that we typically envision while running our code. For instance, the code
above is returning the number of students in the pstat_grades dataframe whose major was either
PSTAT or Econ. Using the pipe operator (like we did) makes our workflow clear:

• take the pstat_grades dataframe,
• filter out rows to leave only those with major value equal to either "PSTAT" or "Econ",
• and count the number of rows of the resulting dataframe.

Column-wide Operations

Filtering and arranging can be thought of as row-wide application; that is to say, the filter() and
arrange() functions work by operating on the rows of a dataframe. There are a handful of column-
wide operations that are of use to us as well. We’ll return to these periodically throughout the course
- for now, I’d like to introduce you to the select() function.

As the name suggests, the select() function is used primarily to select columns of a dataframe
according to a set of specified criteria. I find the select() column most useful when we want to select
a series of columns by name. Recall that it is quite easy to select a single column of a dataframe, using
the $ operator:
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pstat_grades$final_grade

[1] 87.2 89.2 92.5 97.7 40.1 85.7 95.5 77.1 82.1 99.1

If we wanted to select multiple columns by name, however, we cannot simply use the $ operator. (If
we knew the column indices of the desired columns we could use indexing/slicing, however with very
large datasets it becomes unrealistic to suppose we know the column indices of any desired column by
name.) We can, however, use select():

pstat_grades %>%
select(major, final_grade)

major final_grade
1 PSTAT 87.2
2 PSTAT 89.2
3 PSTAT 92.5
4 PSTAT 97.7
5 PSTAT 40.1
6 Comm 85.7
7 Comm 95.5
8 Comm 77.1
9 Econ 82.1
10 Econ 99.1

Question 5

Let’s return to the orders_joined dataframe. Select only the order_no and PPU columns; store
these in a new dataframe called order_no_ppu.

Solution:

## replace this line with your code
order_no_ppu <- orders_joined %>%
select(order_no, PPU)

Answer Check:

# DO NOT EDIT THIS LINE
invisible({check("tests/q5.R")})

All tests passed!

Grouping a Dataframe

Finally, let’s talk about what is perhaps one of the most important dataframe operations: grouping.
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As an example, let’s (again) return to our pstat_grades dataframe. Suppose we want to compute
the average (mean) final grade within each of the 3 majors represented in the dataset. That is, we’d
like to create a table that contains the average final grade of PSTAT students, the average final grade
of Communications students, and the average final grade of Economics students.

There are many ways we could do this, one of which includes looping through the different majors.
However, the “cleanest” (i.e. most succinct) way to achieve our desired goal is to group by major. Ad-
mittedly, grouping is a somewhat abstract concept, largely because the group_by() function operates
almost entirely internally. For example:

pstat_grades %>%
group_by(major)

# A tibble: 10 x 3
# Groups: major [3]

student_id major final_grade
<int> <chr> <dbl>

1 1 PSTAT 87.2
2 2 PSTAT 89.2
3 3 PSTAT 92.5
4 4 PSTAT 97.7
5 5 PSTAT 40.1
6 6 Comm 85.7
7 7 Comm 95.5
8 8 Comm 77.1
9 9 Econ 82.1
10 10 Econ 99.1

It doesn’t really look like anything has changed! But, that is only because the many chagnes that have
taken place took place behind the scenes: now, the dataframe is charged and ready to apply functions
across groups. For example, to compute the average final grades across majors, we can use:

pstat_grades %>%
group_by(major) %>%
summarise(avg_grade = mean(final_grade))

# A tibble: 3 x 2
major avg_grade
<chr> <dbl>

1 Comm 86.1
2 Econ 90.6
3 PSTAT 81.3
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Appreciating the Pipe

By the way, I’d like to take a moment and have us all appreciate the heavy lifting the pipe
operator is doing in the above command! We could technically have written the same code
without the pipe operator as:

summarise(group_by(pstat_grades, major), avg_grade = mean(final_grade))

# A tibble: 3 x 2
major avg_grade
<chr> <dbl>

1 Comm 86.1
2 Econ 90.6
3 PSTAT 81.3

But notice how clunky and awkward that code syntax is - there are a lot of parentheses flying
about, and it’s a little difficult to see exactly how we can break the code across lines. Additionally,
as mentioned previously, the order in which the functions are being applied has been mixed up
a bit.

Question 6

Let’s return to the orders_joined dataframe. Compute the number of each item (e.g. Taro
with Boba, Jasmine Milk with Lychee, etc.) that was sold. (For practice, use the pipe operator.)
Store this table in a variable called num_each_sold, and ensure that the column names are
description and num_units (as a hint, look up the help file for the rename() function!). Then,
display the first three rows of your num_each_sold table and check that they look like this:

description num_units

Jasmine Milk; Boba 14
Jasmine Milk; Egg Pudding 7
Jasmine Milk; Lychee 13
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Solution:

## replace this line with your code
num_each_sold <- orders_joined %>%
group_by(DESCRIP) %>%
summarize(num_units = n()) %>%
rename(description = DESCRIP)

head(num_each_sold, 3)

# A tibble: 3 x 2
description num_units
<chr> <int>

1 Jasmine Milk; Boba 14
2 Jasmine Milk; Egg Pudding 7
3 Jasmine Milk; Lychee 13

Answer Check:

# DO NOT EDIT THIS LINE
invisible({check("tests/q6.R")})

All tests passed!

Finally, let’s close out by calculating what we set out to calculate: the total amount of revenue
generated by sales of each item type.

Question 7

Obtain a three-column table with column names item, num_units, and tot_rev that displays
the number of units sold of each item type along with the total revenue generated by that
item type. Store this in a dataframe called total_revenue; display the first three rows of your
total_revenue dataframe, and check that they match the following:

item num_units tot_rev

Jasmine Milk; Boba 14 73.5
Jasmine Milk; Egg Pudding 7 40.2
Jasmine Milk; Lychee 13 74.8
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Solution:

## replace this line with your code
total_revenue <- num_each_sold
total_revenue$tot_rev <- total_revenue$num_units * inventory$PPU
total_revenue <- total_revenue %>% rename(item = description)
head(total_revenue, 3)

# A tibble: 3 x 3
item num_units tot_rev
<chr> <int> <dbl>

1 Jasmine Milk; Boba 14 73.5
2 Jasmine Milk; Egg Pudding 7 40.2
3 Jasmine Milk; Lychee 13 74.8

Note: this is not the only way to solve this problem.

Answer Check:

# DO NOT EDIT THIS LINE
invisible({check("tests/q7.R")})

All tests passed!

Part IV: Data Tidying

We got a bit lucky in that both tables in our GauchoBubble database were tidy. As we saw in lecture
last week, however, not all datasets are tidy! We’ll close off this lab by talking about some of the R
functions commonly used for data tidying.

Firstly, recall that a dataset is said to be tidy if:

1) Each variable forms a column
2) Each observation forms a row
3) Each type of observational unit forms a table

We also saw that there are 4 common ways data fails to be tidy:

1) Column headers are values, not variable names
2) Multiple variables are stored in one column
3) Variables are stored in both rows and columns
4) A single observational unit is stored in multiple tables
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In Lecture 2, we discussed the theory behind some of the operations used to “fix” the above messes:
melting, pivoting, and merging. We talked extensively about merging (remember that this is the
same thing as joining!) at the start of this lab; let’s talk a bit about melting and pivoting.

Melting a Dataframe

As a simple example, let’s consider the following (mock) dataset which displays the number of cases
of a particular disease, tracked over time and across two counties:

disease_data <- data.frame(
County = c("County A", "County B"),
Day1 = c(109, 150),
Day2 = c(106, 149),
Day3 = c(104, 140),
Day4 = c(102, 145),
Day5 = c(100, 137)

)

disease_data %>% pander()

County Day1 Day2 Day3 Day4 Day5
County A 109 106 104 102 100
County B 150 149 140 145 137

Here, the observational units are the counties, and the variables are day and number of cases (no
observation is fully identified without specifying measurements for each of these two attributes!).
Hence, we can see that the column names of this dataframe are values, not variable names: that is,
we have case (1) above, and our data is not tidy.

To tidy the dataframe, we can melt it:

disease_data %>%
melt(

id.vars = "County", # which variables to retain for each row?
variable.name = "Day", # name for the variable containing column names
value.name = "Num.Cases" # name for the variable containing values

) %>%
pander()

County Day Num.Cases
County A Day1 109
County B Day1 150
County A Day2 106
County B Day2 149

19



County Day Num.Cases
County A Day3 104
County B Day3 140
County A Day4 102
County B Day4 145
County A Day5 100
County B Day5 137

Alternatively, we can use the pivot_longer() function:

disease_data %>%
pivot_longer(

cols = !County,
names_to = "Day",
values_to = "Num.Cases"

) %>%
pander()

County Day Num.Cases
County A Day1 109
County A Day2 106
County A Day3 104
County A Day4 102
County A Day5 100
County B Day1 150
County B Day2 149
County B Day3 140
County B Day4 145
County B Day5 137

Note that we obtain the mostly same output using either melt() or pivot_longer(), with only the
order of rows differing across the two.

Question 8

Suppose we really want to make the outputs of melt() and pivot_longer() exactly match.
Look up the help file for pivot_longer(), and figure out which additional arguments need
to be specified in order to make the outputs of melt() and pivot_longer() match exactly.
Then, pipe the disease_data dataframe into a call to pivot_longer() with these additional
arguments specified, and visually confirm that this new output is the same as the output
obtained using melt() above.

Solution:
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## replace this line with your code
disease_data %>%
pivot_longer(

cols = !County,
names_to = "Day",
values_to = "Num.Cases",
cols_vary = "slowest"

) %>%
pander()

County Day Num.Cases
County A Day1 109
County B Day1 150
County A Day2 106
County B Day2 149
County A Day3 104
County B Day3 140
County A Day4 102
County B Day4 145
County A Day5 100
County B Day5 137

Answer Check:
There is no autograder for this question; your TA will manually check that your answers are
correct.

Submission Details

Congrats on finishing the first PSTAT 100 lab! Please carry out the following steps:

Submission Details

1) Check that all of your tables, plots, and code outputs are rendering correctly in your final
.pdf.

2) Check that you passed all of the test cases (on questions that have autograders). You’ll
know that you passed all tests for a particular problem when you get the message “All tests
passed!”.

3) Submit ONLY your .pdf to Gradescope. Make sure to match pages to your questions -
we’ll be lenient on the first few labs, but after a while failure to match pages will result in
point penalties.
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